본문 바로가기

리디북스 접속이 원활하지 않습니다. 새로 고침(F5)해주세요.
계속해서 문제가 발생한다면 리디북스 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

RIDIBOOKS

리디북스 검색

최근 검색어

'검색어 저장 끄기'로 설정되어 있습니다.


리디북스 카테고리



머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로 상세페이지

컴퓨터/IT 개발/프로그래밍

머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로

구매종이책 정가33,000
전자책 정가26,400(20%)
판매가26,400
머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로

책 소개

<머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로> 간결한 개념, 수학, 실용적인 코드로 머신 러닝 기초 이론을 완성한다!



코드 실행만으로는 머신 러닝을 충분히 이해할 수 없다. 머신 러닝을 제대로 이해하고 싶다면 코드 외에도 머신 러닝 이론과 머신 러닝 알고리즘의 뒤편에 있는 수학 개념을 알아야 한다. 이 책은 이해를 돕는 개념 설명, 머신 러닝 핵심 알고리즘의 작동 방식과 사용 방법, 그 밑바탕이 되는 수학, 실용적인 예제까지 이론과 코드를 균형 있게 설명한다. 파이썬 언어와 파이썬 기반의 머신 러닝 핵심 라이브러리(SciPy, NumPy, scikit-learn, Matplotlib, Pandas)를 사용해 머신 러닝을, 텐서플로를 사용해 딥러닝을 실습하면서 머신 러닝과 딥러닝 핵심 알고리즘을 설명하고, 간단한 알고리즘은 처음부터 직접 구현해본다. 또한, 사이킷런의 기여자이자 mlxtend 라이브러리 제작자인 저자가 오랜 기간 머신 러닝 개발자로 일하면서 익힌 노하우도 책 곳곳에서 만날 수 있다. 머신 러닝에 관심 있는 분들에게 추천한다.



저자 소개

ㆍ지은이 세바스찬 라시카

저자소개
오랫동안 파이썬을 사용했고 많은 세미나에서 데이터 과학, 머신 러닝, 딥러닝의 실전 활용에 관해 발표했다. 대표적인 과학 컴퓨팅 콘퍼런스인 사이파이(SciPy) 콘퍼런스에서 머신 러닝 튜토리얼을 진행했고, 위스콘신 대학교에서 강의한다. ‘2016~2017년 학과 우수 대학원생’과 ‘2016년 ACM Computing Reviews 베스트’를 수상했다. 여가 시간에는 파이썬 오픈 소스 프로젝트에 기여하는 것을 좋아하며, 직접 개발한 도구들이 캐글 같은 머신 러닝 경연 대회에서 널리 사용되고 있다.

ㆍ지은이 바히드 미자리리

저자소개
대규모 분자 구조 컴퓨터 시뮬레이션을 위한 새로운 방법에 관한 연구로 기계 공학 박사 학위를 취득했다. 미시간 주립 대학교의 컴퓨터 과학과 공학 대학에서 다양한 컴퓨터 비전 프로젝트의 머신 러닝 애플리케이션을 연구 중이다. 특히 딥러닝 기술을 사용해 생체 데이터의 프라이버시를 보호하는 데 관심이 많다. 자율 주행 자동차를 연구하는 엔지니어링 팀과도 협업하고 있는데, 보행자 감지를 위해 다중 스펙트럼 이미지를 사용한 신경망 모델을 설계하고 있다.

목차

1장 컴퓨터는 데이터에서 배운다

1.1 데이터를 지식으로 바꾸는 지능적인 시스템 구축

1.2 머신 러닝의 세 가지 종류

__1.2.1 지도 학습으로 미래 예측

__1.2.2 강화 학습으로 반응형 문제 해결

__1.2.3 비지도 학습으로 숨겨진 구조 발견

1.3 기본 용어와 표기법 소개

1.4 머신 러닝 시스템 구축 로드맵

__1.4.1 전처리: 데이터 형태 갖추기

__1.4.2 예측 모델 훈련과 선택

__1.4.3 모델을 평가하고 본 적 없는 샘플로 예측

1.5 머신 러닝을 위한 파이썬

__1.5.1 파이썬과 PIP에서 패키지 설치

__1.5.2 아나콘다 파이썬 배포판과 패키지 관리자 사용

__1.5.3 과학 컴퓨팅, 데이터 과학, 머신 러닝을 위한 패키지

1.6 요약



2장 간단한 분류 알고리즘 훈련

2.1 인공 뉴런: 초기 머신 러닝의 간단한 역사

__2.1.1 인공 뉴런의 수학적 정의

__2.1.2 퍼셉트론 학습 규칙

2.2 파이썬으로 퍼셉트론 학습 알고리즘 구현

__2.2.1 객체 지향 퍼셉트론 API

__2.2.2 붓꽃 데이터셋에서 퍼셉트론 훈련

2.3 적응형 선형 뉴런과 학습의 수렴

__2.3.1 경사 하강법으로 비용 함수 최소화

__2.3.2 파이썬으로 아달린 구현

__2.3.3 특성 스케일을 조정하여 경사 하강법 결과 향상

__2.3.4 대규모 머신 러닝과 확률적 경사 하강법

2.4 요약



3장 사이킷런을 타고 떠나는 머신 러닝 분류 모델 투어

3.1 분류 알고리즘 선택

3.2 사이킷런 첫걸음: 퍼셉트론 훈련

3.3 로지스틱 회귀를 사용한 클래스 확률 모델링

__3.3.1 로지스틱 회귀의 이해와 조건부 확률

__3.3.2 로지스틱 비용 함수의 가중치 학습

__3.3.3 아달린 구현을 로지스틱 회귀 알고리즘으로 변경

__3.3.4 사이킷런을 사용하여 로지스틱 회귀 모델 훈련

__3.3.5 규제를 사용하여 과대적합 피하기

3.4 서포트 벡터 머신을 사용한 최대 마진 분류

__3.4.1 최대 마진

__3.4.2 슬랙 변수를 사용하여 비선형 분류 문제 다루기

__3.4.3 사이킷런의 다른 구현

3.5 커널 SVM을 사용하여 비선형 문제 풀기

__3.5.1 선형적으로 구분되지 않는 데이터를 위한 커널 방법

__3.5.2 커널 기법을 사용하여 고차원 공간에서 분할 초평면 찾기

3.6 결정 트리 학습

__3.6.1 정보 이득 최대화: 자원을 최대로 활용

__3.6.2 결정 트리 만들기

__3.6.3 랜덤 포레스트로 여러 개의 결정 트리 연결

3.7 k-최근접 이웃: 게으른 학습 알고리즘

3.8 요약



4장 좋은 훈련 세트 만들기: 데이터 전처리

4.1 누락된 데이터 다루기

__4.1.1 테이블 형태 데이터에서 누락된 값 식별

__4.1.2 누락된 값이 있는 샘플이나 특성 제외

__4.1.3 누락된 값 대체

__4.1.4 사이킷런 추정기 API 익히기

4.2 범주형 데이터 다루기

__4.2.1 순서가 있는 특성과 순서가 없는 특성

__4.2.2 순서 특성 매핑

__4.2.3 클래스 레이블 인코딩

__4.2.4 순서가 없는 특성에 원-핫 인코딩 적용

4.3 데이터셋을 훈련 세트와 테스트 세트로 나누기

4.4 특성 스케일 맞추기

4.5 유용한 특성 선택

__4.5.1 모델 복잡도 제한을 위한 L1 규제와 L 2 규제

__4.5.2 L 2 규제의 기하학적 해석

__4.5.3 L1 규제를 사용한 희소성

__4.5.4 순차 특성 선택 알고리즘

4.6 랜덤 포레스트의 특성 중요도 사용

4.7 요약



5장 차원 축소를 사용한 데이터 압축

5.1 주성분 분석을 통한 비지도 차원 축소

__5.1.1 주성분 분석의 주요 단계

__5.1.2 주성분 추출 단계

__5.1.3 총분산과 설명된 분산

__5.1.4 특성 변환

__5.1.5 사이킷런의 주성분 분석

5.2 선형 판별 분석을 통한 지도 방식의 데이터 압축

__5.2.1 주성분 분석 vs 선형 판별 분석

__5.2.2 선형 판별 분석의 내부 동작 방식

__5.2.3 산포 행렬 계산

__5.2.4 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택

__5.2.5 새로운 특성 공간으로 샘플 투영

__5.2.6 사이킷런의 LDA

5.3 커널 PCA를 사용하여 비선형 매핑

__5.3.1 커널 함수와 커널 트릭

__5.3.2 파이썬으로 커널 PCA 구현

__5.3.3 새로운 데이터 포인트 투영

__5.3.4 사이킷런의 커널 PCA

5.4 요약



6장 모델 평가와 하이퍼파라미터 튜닝의 모범 사례

6.1 파이프라인을 사용한 효율적인 워크플로

__6.1.1 위스콘신 유방암 데이터셋

__6.1.2 파이프라인으로 변환기와 추정기 연결

6.2 k-겹 교차 검증을 사용한 모델 성능 평가

__6.2.1 홀드아웃 방법

__6.2.2 k-겹 교차 검증

6.3 학습 곡선과 검증 곡선을 사용한 알고리즘 디버깅

__6.3.1 학습 곡선으로 편향과 분산 문제 분석

__6.3.2 검증 곡선으로 과대적합과 과소적합 조사

6.4 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝

__6.4.1 그리드 서치를 사용한 하이퍼파라미터 튜닝

__6.4.2 중첩 교차 검증을 사용한 알고리즘 선택

6.5 여러 가지 성능 평가 지표

__6.5.1 오차 행렬

__6.5.2 분류 모델의 정밀도와 재현율 최적화

__6.5.3 ROC 곡선 그리기

__6.5.4 다중 분류의 성능 지표

6.6 불균형한 클래스 다루기

6.7 요약



7장 다양한 모델을 결합한 앙상블 학습

7.1 앙상블 학습

7.2 다수결 투표를 사용한 분류 앙상블

__7.2.1 간단한 다수결 투표 분류기 구현

__7.2.2 다수결 투표 방식을 사용하여 예측 만들기

__7.2.3 앙상블 분류기의 평가와 튜닝

7.3 배깅: 부트스트랩 샘플링을 통한 분류 앙상블

__7.3.1 배깅 알고리즘의 작동 방식

__7.3.2 배깅으로 Wine 데이터셋의 샘플 분류

7.4 약한 학습기를 이용한 에이다부스트

__7.4.1 부스팅 작동 원리

__7.4.2 사이킷런에서 에이다부스트 사용

7.5 요약



8장 감성 분석에 머신 러닝 적용

8.1 텍스트 처리용 IMDb 영화 리뷰 데이터 준비

__8.1.1 영화 리뷰 데이터셋 구하기

__8.1.2 영화 리뷰 데이터셋을 더 간편한 형태로 전처리

8.2 BoW 모델 소개

__8.2.1 단어를 특성 벡터로 변환

__8.2.2 tf-idf를 사용하여 단어 적합성 평가

__8.2.3 텍스트 데이터 정제

__8.2.4 문서를 토큰으로 나누기

8.3 문서 분류를 위한 로지스틱 회귀 모델 훈련

8.4 대용량 데이터 처리: 온라인 알고리즘과 외부 메모리 학습

8.5 잠재 디리클레 할당을 사용한 토픽 모델링

__8.5.1 LDA를 사용한 텍스트 문서 분해

__8.5.2 사이킷런의 LDA

8.6 요약



9장 웹 애플리케이션에 머신 러닝 모델 내장

9.1 학습된 사이킷런 추정기 저장

9.2 데이터를 저장하기 위해 SQLite 데이터베이스 설정

9.3 플라스크 웹 애플리케이션 개발

__9.3.1 첫 번째 플라스크 애플리케이션

__9.3.2 폼 검증과 화면 출력

9.4 영화 리뷰 분류기를 웹 애플리케이션으로 만들기

__9.4.1 파일과 폴더: 디렉터리 구조 살펴보기

__9.4.2 메인 애플리케이션 app.py 구현

__9.4.3 리뷰 폼 구성

__9.4.4 결과 페이지 템플릿 만들기

9.5 공개 서버에 웹 애플리케이션 배포

__9.5.1 PythonAnywhere 계정 만들기

__9.5.2 영화 분류 애플리케이션 업로드

__9.5.3 영화 분류기 업데이트

9.6 요약



10장 회귀 분석으로 연속적 타깃 변수 예측

10.1 선형 회귀

__10.1.1 단변량 선형 회귀

__10.1.2 다변량 선형 회귀

10.2 주택 데이터셋 탐색

__10.2.1 데이터프레임으로 주택 데이터셋 읽기

__10.2.2 데이터셋의 중요 특징 시각화

__10.2.3 상관관계 행렬을 사용한 분석

10.3 최소 제곱 선형 회귀 모델 구현

__10.3.1 경사 하강법으로 회귀 모델의 파라미터 구하기

__10.3.2 사이킷런으로 회귀 모델의 가중치 추정

10.4 RANSAC을 사용하여 안정된 회귀 모델 훈련

10.5 선형 회귀 모델의 성능 평가

10.6 회귀에 규제 적용

10.7 선형 회귀 모델을 다항 회귀로 변환

__10.7.1 사이킷런을 사용하여 다항식 항 추가

__10.7.2 주택 데이터셋을 사용한 비선형 관계 모델링

10.8 랜덤 포레스트를 사용하여 비선형 관계 다루기

__10.8.1 결정 트리 회귀

__10.8.2 랜덤 포레스트 회귀

10.9 요약



11장 레이블되지 않은 데이터 다루기: 군집 분석

11.1 k-평균 알고리즘을 사용하여 유사한 객체 그룹핑

__11.1.1 사이킷런을 사용한 k-평균 군집

__11.1.2 k-평균 ++로 초기 클러스터 센트로이드를 똑똑하게 할당

__11.1.3 직접 군집 vs 간접 군집

__11.1.4 엘보우 방법을 사용하여 최적의 클러스터 개수 찾기

__11.1.5 실루엣 그래프로 군집 품질을 정량화

11.2 계층적인 트리로 클러스터 조직화

__11.2.1 상향식으로 클러스터 묶기

__11.2.2 거리 행렬에서 계층 군집 수행

__11.2.3 히트맵에 덴드로그램 연결

__11.2.4 사이킷런에서 병합 군집 적용

11.3 DBSCAN을 사용하여 밀집도가 높은 지역 찾기

11.4 요약



12장 다층 인공 신경망을 밑바닥부터 구현

12.1 인공 신경망으로 복잡한 함수 모델링

__12.1.1 단일층 신경망 요약

__12.1.2 다층 신경망 구조

__12.1.3 정방향 계산으로 신경망 활성화 출력 계산

12.2 손글씨 숫자 분류

__12.2.1 MNIST 데이터셋 구하기

__12.2.2 다층 퍼셉트론 구현

12.3 인공 신경망 훈련

__12.3.1 로지스틱 비용 함수 계산

__12.3.2 역전파 알고리즘 이해

__12.3.3 역전파 알고리즘으로 신경망 훈련

12.4 신경망의 수렴

12.5 신경망 구현에 관한 몇 가지 첨언

12.6 요약



13장 텐서플로를 사용하여 신경망 훈련

13.1 고성능 머신 러닝 라이브러리 텐서플로

__13.1.1 텐서플로란?

__13.1.2 텐서플로 학습 방법

__13.1.3 텐서플로 시작

__13.1.4 배열 구조 다루기

__13.1.5 텐서플로 저수준 API로 간단한 모델 개발

13.2 tf.keras API로 다층 신경망 훈련

__13.2.1 훈련 데이터 준비

__13.2.2 피드포워드 신경망 구성

__13.2.3 피드포워드 신경망 훈련

13.3 다층 신경망의 활성화 함수 선택

__13.3.1 로지스틱 함수 요약

__13.3.2 소프트맥스 함수를 사용하여 다중 클래스 확률 예측

__13.3.3 하이퍼볼릭 탄젠트로 출력 범위 넓히기

__13.3.4 렐루 활성화 함수

13.4 요약



14장 텐서플로의 구조 자세히 알아보기

14.1 텐서플로의 주요 특징

14.2 텐서플로의 랭크와 텐서

__14.2.1 텐서의 랭크와 크기를 확인하는 방법

14.3 텐서를 다차원 배열로 변환

14.4 텐서플로의 계산 그래프 이해

14.5 텐서플로의 변수

14.6 tf.keras API 자세히 배우기

__14.6.1 Sequential 모델

__14.6.2 함수형 API

__14.6.3 tf.keras 모델의 저장과 복원

14.7 계산 그래프 시각화

__14.7.1 텐서보드 익숙하게 다루기

__14.7.2 케라스의 층 그래프 그리기

14.8 요약



15장 심층 합성곱 신경망으로 이미지 분류

15.1 합성곱 신경망의 구성 요소

__15.1.1 CNN과 특성 계층 학습

__15.1.2 이산 합성곱 수행

__15.1.3 서브샘플링

15.2 기본 구성 요소를 사용하여 심층 합성곱 신경망 구성

__15.2.1 여러 개의 입력 또는 컬러 채널 다루기

__15.2.2 드롭아웃으로 신경망 규제

15.3 텐서플로를 사용하여 심층 합성곱 신경망 구현

__15.3.1 다층 CNN 구조

__15.3.2 데이터 적재와 전처리

__15.3.3 텐서플로 tf.keras API로 CNN 구성

__15.3.4 합성곱 신경망 모델 훈련

__15.3.5 활성화 출력과 필터 시각화

15.4 요약



16장 순환 신경망으로 시퀀스 데이터 모델링

16.1 시퀀스 데이터 소개

__16.1.1 시퀀스 데이터 모델링: 순서를 고려한다

__16.1.2 시퀀스 표현

__16.1.3 시퀀스 모델링의 종류

16.2 시퀀스 모델링을 위한 RNN

__16.2.1 RNN 구조와 데이터 흐름 이해

__16.2.2 RNN의 활성화 출력 계산

__16.2.3 긴 시퀀스 학습의 어려움

__16.2.4 LSTM 유닛

16.3 텐서플로의 tf.keras API로 시퀀스 모델링을 위한 다층 RNN 구현

16.4 첫 번째 프로젝트: 다층 RNN으로 IMDb 영화 리뷰의 감성 분석 수행

__16.4.1 데이터 준비

__16.4.2 임베딩

__16.4.3 RNN 모델 만들기

__16.4.4 감성 분석 RNN 모델 훈련

__16.4.5 감성 분석 RNN 모델 평가

16.5 두 번째 프로젝트: 텐서플로로 글자 단위 언어 모델 구현

__16.5.1 데이터 전처리

__16.5.2 글자 단위 RNN 모델 만들기

__16.5.3 글자 단위 RNN 모델 훈련

__16.5.4 글자 단위 RNN 모델로 텍스트 생성

16.6 전체 요약



부록 A 윈도에 아나콘다, 사이킷런, 텐서플로 설치

A.1 아나콘다 설치

A.2 사이킷런, 텐서플로 설치

A.3 예제 노트북 실행

A.4 주피터 노트북 뷰어와 구글 코랩 사용


리뷰

구매자 별점

0.0

점수비율

  • 5
  • 4
  • 3
  • 2
  • 1

0명이 평가함

리뷰 작성 영역

이 책을 평가해주세요!

내가 남긴 별점 0.0

별로예요

그저 그래요

보통이에요

좋아요

최고예요

별점 취소

구매자 표시 기준은 무엇인가요?

'구매자' 표시는 리디북스에서 유료도서 결제 후 다운로드 하시거나 리디셀렉트 도서를 다운로드하신 경우에만 표시됩니다.

무료 도서 (프로모션 등으로 무료로 전환된 도서 포함)
'구매자'로 표시되지 않습니다.
시리즈 도서 내 무료 도서
'구매자’로 표시되지 않습니다. 하지만 같은 시리즈의 유료 도서를 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
도서를 영구 삭제해도 ‘구매자’ 표시는 남아있습니다.
결제 취소
‘구매자’ 표시가 자동으로 사라집니다.

이 책과 함께 구매한 책


이 책과 함께 둘러본 책



본문 끝 최상단으로 돌아가기


spinner
모바일 버전