본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning for Finance 상세페이지

Machine Learning for Finance

Principles and practice for financial insiders

  • 관심 2
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2019.05.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 457 쪽
  • 8.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789134698
ECN
-
Machine Learning for Finance

작품 정보

▶Book Description
Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including in insurance, transactions, and lending. It explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself.

The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on the advanced ML concepts and ideas that can be applied in a wide variety of ways.

The book shows how machine learning works on structured data, text, images, and time series. It includes coverage of generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. It discusses how to fight bias in machine learning and ends with an exploration of Bayesian inference and probabilistic programming.

▶What You Will Learn
- Apply machine learning to structured data, natural language, photographs, and written text
- How machine learning can detect fraud, forecast financial trends, analyze customer sentiments, and more
- Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow
- Dig deep into neural networks, examine uses of GANs and reinforcement learning
- Debug machine learning applications and prepare them for launch
- Address bias and privacy concerns in machine learning

▶Key Features
- Explore advances in machine learning and how to put them to work in financial industries
- Clear explanation and expert discussion of how machine learning works, with an emphasis on financial applications
- Deep coverage of advanced machine learning approaches including neural networks, GANs, and reinforcement learning

▶Who This Book Is For
This book is ideal for readers who understand math and Python, and want to adopt machine learning in financial applications. The book assumes college-level knowledge of math and statistics.

▶What this book covers
- Chapter 1, Neural Networks and Gradient-Based Optimization, will explore what kinds of ML there are, and the motivations for using them in different areas of the financial industry. We will then learn how neural networks work and build one from scratch.

- Chapter 2, Applying Machine Learning to Structured Data, will deal with data that resides in a fixed field within, for example, a relational database. We will walk through the process of model creation: from forming a heuristic, to building a simple model on engineered features, to a fully learned solution. On the way, we will learn about how to evaluate our models with scikit-learn, how to train tree-based methods such as random forests, and how to use Keras to build a neural network for this task.

- Chapter 3, Utilizing Computer Vision, describes how computer vision allows us to perceive and interpret the real world at scale. In this chapter, we will learn the mechanisms with which computers can learn to identify image content. We will learn about convolutional neural networks and the Keras building blocks we need to design and train state-of-the-art computer vision models.

- Chapter 4, Understanding Time Series, looks at the large number of tools devoted to the analysis of temporally related data. In this chapter, we will first discuss the "greatest hits" that industry professionals have been using to model time series and how to use them efficiently with Python. We will then discover how modern ML algorithms can find patterns in time series and how they are complemented by classic methods.

- Chapter 5, Parsing Textual Data with Natural Language Processing, uses the spaCy library and a large corpus of news to discuss how common tasks such as named entity recognition and sentiment analysis can be performed quickly and efficiently. We will then learn how we can use Keras to build our own custom language models. The chapter introduces the Keras functional API, which allows us to build much more complex models that can, for instance, translate between languages.

- Chapter 6, Using Generative Models, explains how generative models generate new data. This is useful when we either do not have enough data or want to analyze our data by learning about how the model perceives it. In this chapter, we will learn about (variational) autoencoders as well as generative adversarial models. We will learn how to make sense of them using the t-SNE algorithm and how to use them for unconventional purposes, such as catching credit card fraud. We will learn about how we can supplement human labeling operations with ML to streamline data collection and labeling. Finally, we will learn how to use active learning to collect the most useful data and greatly reduce data needs.

- Chapter 7, Reinforcement Learning for Financial Markets, looks at reinforcement learning, which is an approach that does not require a human-labeled "correct" answer for training, but only a reward signal. In this chapter, we will discuss and implement several reinforcement learning algorithms, from Q-learning to Advantage Actor-Critic (A2C). We will discuss the underlying theory, its connection to economics, and in a practical example, see how reinforcement learning can be used to directly inform portfolio formation.

- Chapter 8, Privacy, Debugging, and Launching Your Products, addresses how there is a lot that can go wrong when building and shipping complex models. We will discuss how to debug and test your data, how to keep sensitive data private while training models on it, how to prepare your data for training, and how to disentangle why your model is making the predictions it makes. We will then look at how to automatically tune your model's hyperparameters, how to use the learning rate to reduce overfitting, and how to diagnose and avoid exploding and vanishing gradients. After that, the chapter explains how to monitor and understand the right metrics in production. Finally, it discusses how you can improve the speed of your models.

- Chapter 9, Fighting Bias, discusses how ML models can learn unfair policies and even break anti-discrimination laws. It highlights several approaches to improve model fairness, including pivot learning and causal learning. It shows how to inspect models and probe for bias. Finally, we discuss how unfairness can be a failure in the complex system that your model is embedded in and give a checklist that can help you reduce bias.

- Chapter 10, Bayesian Inference and Probabilistic Programming, uses PyMC3 to discuss the theory and practical advantages of probabilistic programming. We will implement our own sampler, understand Bayes theorem numerically, and finally learn how we can infer the distribution of volatility from stock prices.

작가 소개

▶About the Author
- Jannes Klaas
Jannes Klaas is a quantitative researcher with a background in economics and finance. He taught machine learning for finance as lead developer for machine learning at the Turing Society, Rotterdam. He has led machine learning bootcamps and worked with financial companies on data-driven applications and trading strategies.

Jannes is currently a graduate student at Oxford University with active research interests including systemic risk and large-scale automated knowledge discovery.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

재테크/금융/부동산 베스트더보기

  • 손실은 짧게 수익은 길게 (깡토)
  • 단 3개의 미국 ETF로 은퇴하라 (김지훈)
  • 개정판 | 현명한 투자자 1 (벤자민 그레이엄)
  • 실패를 성공으로 바꾸는 주식투자의 기술 (정재호)
  • 해외선물 처음공부 (김직선)
  • 마라톤 투자자 서한 (에드워드 챈슬러, 김상우)
  • 마인드셋은 어떻게 투자의 무기가 되는가 (마크 미너비니, 장진영)
  • 부자 아빠 가난한 아빠 20주년 특별 기념판 (로버트 기요사키, 안진환)
  • 이동 평균선 투자법 (고지로 강사)
  • 가속화 장기투자 법칙 : 4000만 원으로 시작해 40억 만든 가치주 복리 혁명 (임인홍(오일전문가))
  • 부의 추월차선(10주년 기념 에디션) (엠제이 드마코, 신소영)
  • 가상화폐 단타의 정석 (나씨)
  • 비트코인의 시대 (김창익)
  • 투자, 진화를 만나다 (풀락 프라사드, 안세민)
  • 부자는 왜 더 부자가 되는가 (로버트 기요사키, 오웅석)
  • 제시 리버모어의 주식투자 바이블 (제시 리버모어, 이은주)
  • 왜 추세추종전략인가 (마이클 코벨, 박준형)
  • 돈의 역사는 되풀이된다 (홍춘욱)
  • 개정판 | 주식시장에서 살아남는 심리 투자 법칙 (알렉산더 엘더, 신가을)
  • 월가의 영웅 (피터 린치, 존 로스차일드)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전