이 책에서는 강화학습이나 딥러닝 같은 이론보다는 강화학습을 실제로 구현하는 데 초점을 맞춘다. 연구자가 아닌 일반인을 대상으로 실제로 강화학습 알고리즘을 구현하는 과정과 통해 강화학습 및 강화학습에 딥러닝을 접목한 심층강화학습을 이해하는 것을 목표로 한다. 따라서 이론보다는 구현을 중시하고 코드와 그에 대한 설명을 많이 다룬다. 초보 수준의 파이썬 프로그래밍 및 선형대수에 대한 지식을 갖췄고, 딥러닝과 강화학습에 대해 관심은 있지만 자세한 구현 방법을 알지 못하는 분들이라면 이 책을 통해 강화학습 및 심층강화학습 알고리즘의 원리와 구체적인 구현 방법을 손에 익힐 수 있을 것이다.
★ 이 책에서 다루는 내용 ★
- 강화학습 기초 이론
- 미로찾기를 통한 강화학습 구현
- 역진자 문제를 통한 강화학습 구현
- 파이토치를 이용한 딥러닝 구현
- 심층강화학습 알고리즘 구현: DQN
- 기타 심층강화학습 알고리즘 및 구현 방법
- AWS GPU 환경에서 벽돌 깨기 구현
작가 소개
오가와 유타로
주식회사 덴쓰 국제정보서비스 기술본부 개발기술부 소속. 딥러닝을 비롯한 머신러닝 관련 기술의 연구개발 및 워크스타일이노베이션실의 HR 데이터 분석을 담당하고 있다. 아카시 공업고등전문학교, 도쿄대학 공학부를 거쳐 도쿄대학 대학원의 짐보-코타니 연구실에서 뇌기능 계측 및 계산 신경과학을 연구했으며 2016년 박사학위를 취득했다. 도쿄대학 특임연구원을 거쳐 현직에는 2017년 4월부터 종사 중이다.