본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Deep Learning with TensorFlow 상세페이지

[체험판] Deep Learning with TensorFlow

Explore neural networks with Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.04.22 전자책, 종이책 동시 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 44 쪽
  • 7.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781786460127
UCI
-

이 작품의 시리즈더보기

  • [체험판] Deep Learning with TensorFlow (Giancarlo Zaccon, Md. Rezaul Karim)
  • Deep Learning with TensorFlow (Giancarlo Zaccon, Md. Rezaul Karim)
[체험판] Deep Learning with TensorFlow

작품 정보

▶About This Book
Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow
⦁ Explore deep neural networks and layers of data abstraction with the help of this comprehensive guide
⦁ Real-world contextualization through some deep learning problems concerning research and application!

▶Who This Book Is For
⦁ The book is intended for a general audience of people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.

▶What You Will Learn
⦁ Learn about machine learning landscapes along with the historical development and progress of deep learning
⦁ Learn about deep machine intelligence and GPU computing with the latest TensorFlow 1.x
⦁ Access public datasets and utilize them using TensorFlow to load, process, and transform data
⦁ Use TensorFlow on real-world datasets, including images, text, and more
⦁ Learn how to evaluate the performance of your deep learning models
⦁ Using deep learning for scalable object detection and mobile computing
⦁ Train machines quickly to learn from data by exploring reinforcement learning techniques
⦁ Explore active areas of deep learning research and applications

▶In Detail
Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x.

Throughout the book, you'll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you'll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context.

After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects.

▶Style and approach
This step-by-step guide will explore common, and not so common, deep neural networks and show how these can be exploited in the real world with complex raw data. With the help of practical examples, you will learn how to implement different types of neural nets to build smart applications related to text, speech, and image data processing.

작가 소개

▶About the Author
⦁ Giancarlo Zaccone has more than ten years of experience in managing research projects both in scientific and industrial areas. He worked as researcher at the C.N.R, the National Research Council, where he was involved in projects relating to parallel computing and scientific visualization. Currently, he is a system and software engineer at a consulting company developing and maintaining software systems for space and defense applications. He is author of the following Packt volumes: Python Parallel Programming Cookbook and Getting Started with TensorFlow.
⦁ Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a Researcher at the Insight Centre for Data Analytics, Ireland. Before that, he worked as a Lead Engineer at Samsung Electronics, Korea.

He has 9 years of R&D experience with C++, Java, R, Scala, and Python. He has published several research papers concerning bioinformatics, big data, and deep learning. He has practical working experience with Spark, Zeppelin, Hadoop, Keras, Scikit-Learn, TensorFlow, DeepLearning4j, MXNet, and H2O.

⦁ Ahmed Menshawy is a Research Engineer at the Trinity College Dublin, Ireland. He has more than 5 years of working experience in the area of Machine Learning and Natural Language Processing (NLP). He holds an MSc in Advanced Computer Science. He started his Career as a Teaching Assistant at the Department of Computer Science, Helwan University, Cairo, Egypt. He taught several advanced ML and NLP courses such as Machine Learning, Image Processing, Linear Algebra, Probability and Statistics, Data structures, Essential Mathematics for Computer Science and Computer Vision. Next, he joined as a research scientist at the Industrial research and development lab at IST Networks, based in Egypt. He was involved in implementing the state-of-the-art system for Arabic Text to Speech. Consequently, he was the main machine learning specialist in that company.

Later on, he joined the Insight Centre for Data Analytics, the National University of Ireland at Galway as a research assistant working on building a Predictive Analytics Platform. Finally, he joined ADAPT Centre, Trinity College Dublin as a research engineer. His main role in ADAPT is to build prototypes and applications using ML and NLP techniques based on the research that is done within ADAPT.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 요즘 당근 AI 개발 (당근 팀)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • 유리링의 실전 게임 시스템 기획 (정윤지(유리링))
  • 처음이지만 프로처럼 쓰는 노션 Notion (박한용(노션너굴))
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • LLM 프로덕션 엔지니어링 (루이-프랑수아 부샤르, 루이 피터스)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 개정판 | 규칙으로 배우는 임베디드 시스템: 회로 설계 및 PCB 설계 규칙 (장선웅)
  • 기획에서 출시까지 FastAPI 개발 백서 (차경묵 )
  • 컨텍스트 엔지니어링으로 구축하는 AI 에이전트 (박경민)
  • C# 스크립트를 활용한 유니티 6 개발 (렘 에퍼슨, 장세윤)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • 처음부터 시작하는 Next.js / React 개발 입문 (미요시 아키, 김모세)
  • 바이브 코딩으로 배우는 풀스택 만들기 (이희찬)
  • 그림과 실습으로 배우는 쿠버네티스 입문 (타카하시 아오이 , 이동규)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전