본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Python Deep Learning 상세페이지

Python Deep Learning

Next generation techniques to revolutionize computer vision, AI, speech and data analysis

  • 관심 0
소장
전자책 정가
27,000원
판매가
27,000원
출간 정보
  • 2017.04.28 전자책, 종이책 동시 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 406 쪽
  • 5.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781786460660
ECN
-

이 작품의 시리즈더보기

  • [체험판] Python Deep Learning (Gianmario Spacag, Daniel Slater)
  • Python Deep Learning (Gianmario Spacag, Daniel Slater)
Python Deep Learning

작품 정보

▶About this book
⦁ Explore and create intelligent systems using cutting-edge deep learning techniques
⦁ Implement deep learning algorithms and work with revolutionary libraries in Python
⦁ Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more
▶Who This Book Is For
⦁ This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired.

▶What You Will Learn
⦁ Get a practical deep dive into deep learning algorithms
⦁ Explore deep learning further with Theano, Caffe, Keras, and TensorFlow
⦁ Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines
⦁ Dive into Deep Belief Nets and Deep Neural Networks
⦁ Discover more deep learning algorithms with Dropout and Convolutional Neural Networks
⦁ Get to know device strategies so you can use deep learning algorithms and libraries in the real world

▶Style and approach
Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.

▶What this book covers
⦁ Chapter 1, Machine Learning –- An Introduction, presents different machine learning approaches and techniques and some of their applications to real-world problems. We will introduce one of the major open source packages available in Python for machine learning, scikit-learn.
⦁ Chapter 2, Neural Networks, formally introduces what neural networks are. We will thoroughly describe how a neuron works and will see how we can stack many layers to create and use deep feed-forward neural networks.
⦁ Chapter 3, Deep Learning Fundamentals, walks you toward an understanding of what deep learning is and how it is related to deep neural networks.
⦁ Chapter 4, Unsupervised Feature Learning, covers two of the most powerful and often-used architectures for unsupervised feature learning: auto-encoders and restricted Boltzmann machines.
⦁ Chapter 5, Image Recognition, starts from drawing an analogy with how our visual cortex works and introduces convolutional layers, followed up with a descriptive intuition of why they work.
⦁ Chapter 6, Recurrent Neural Networks and Language Models, discusses powerful methods that have been very promising in a lot of tasks, such as language modeling and speech recognition.
⦁ Chapter 7, Deep Learning for Board Games, covers the different tools used for solving board games such as checkers and chess.
⦁ Chapter 8, Deep Learning for Computer Games, looks at the more complex problem of training AI to play computer games.
⦁ Chapter 9, Anomaly Detection, starts by explaining the difference and similarities of concepts between outlier detection and anomaly detection. You will be guided through an imaginary fraud case study, followed by examples showing the danger of having anomalies in real-world applications and the importance of automated and fast detection systems.
⦁ Chapter 10, Building a Production-Ready Intrusion Detection System, leverages H2O and general common practices to build a scalable distributed system ready for deployment in production. You will learn how to train a deep learning network using Spark and MapReduce, how to use adaptive learning techniques for faster convergence and very important how to validate a model and evaluate the end to end pipeline.

작가 소개

⦁ Valentino Zocca graduated with a PhD in mathematics from the University of Maryland, USA, with a dissertation in symplectic geometry, after having graduated with a laurea in mathematics from the University of Rome. He spent a semester at the University of Warwick. After a post-doc in Paris, Valentino started working on hightech projects in the Washington, D.C. area and played a central role in the design, development, and realization of an advanced stereo 3D Earth visualization software with head tracking at Autometric, a company later bought by Boeing. At Boeing, he developed many mathematical algorithms and predictive models, and using Hadoop, he has also automated several satellite-imagery visualization programs. He has since become an expert on machine learning and deep learning and has worked at the U.S. Census Bureau and as an independent consultant both in the US and in Italy. He has also held seminars on the subject of machine and deep learning in Milan and New York.
Currently, Valentino lives in New York and works as an independent consultant to a large financial company, where he develops econometric models and uses machine learning and deep learning to create predictive models. But he often travels back to Rome and Milan to visit his family and friends.
⦁ Gianmario Spacagna is a senior data scientist at Pirelli, processing sensors and telemetry data for IoT and connected-vehicle applications.
He works closely with tyre mechanics, engineers, and business units to analyze and formulate hybrid, physics-driven, and data-driven automotive models.
His main expertise is in building machine learning systems and end-to-end solutions for data products.
He is the coauthor of the Professional Data Science Manifesto (datasciencemanifesto.org) and founder of the Data Science Milan meetup community (datasciencemilan.org).
Gianmario loves evangelizing his passion for best practices and effective methodologies in the community.
He holds a master's degree in telematics from the Polytechnic of Turin and software engineering of distributed systems from KTH, Stockholm.
Prior to Pirelli, he worked in retail and business banking (Barclays), cyber security (Cisco), predictive marketing (AgilOne), and some occasional freelancing.
⦁ Daniel Slater started programming at age 11, developing mods for the id Software game Quake. His obsession led him to become a developer working in the gaming industry on the hit computer game series Championship Manager. He then moved into finance, working on risk- and high-performance messaging systems. He now is a staff engineer, working on big data at Skimlinks to understand online user behavior. He spends his spare time training AI to beat computer games. He talks at tech conferences about deep learning and reinforcement learning; his blog can be found at www.danielslater.net. His work in this field has been cited by Google.
⦁ Peter Roelants holds a master's in computer science with a specialization in artificial intelligence from KU Leuven. He works on applying deep learning to a variety of problems, such as spectral imaging, speech recognition, text understanding, and document information extraction. He currently works at Onfido as a team lead for the data extraction research team, focusing on data extraction from official documents.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 멀티패러다임 프로그래밍 (유인동)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 컴파일러 (김상욱)
  • 개정판 | 핸즈온 머신러닝(3판) (오렐리앙 제롱, 박해선)
  • 머신러닝 수학 바이블 (Marc Peter Deise, A. Aldo Faisal)
  • 개발자를 위한 글쓰기 가이드 (유영경)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전