본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Python Deep Learning Cookbook 상세페이지

[체험판] Python Deep Learning Cookbook

Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.10.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 41 쪽
  • 7.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781787122253
ECN
-

이 작품의 시리즈더보기

  • [체험판] Python Deep Learning Cookbook (Indra den Bakker)
  • Python Deep Learning Cookbook (Indra den Bakker)
[체험판] Python Deep Learning Cookbook

작품 정보

▶Book Description
Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics.
The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios.

▶What You Will Learn
⦁ Implement different neural network models in Python
⦁ Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras
⦁ Apply tips and tricks related to neural networks internals, to boost learning performances
⦁ Consolidate machine learning principles and apply them in the deep learning field
⦁ Reuse and adapt Python code snippets to everyday problems
⦁ Evaluate the cost/benefits and performance implication of each discussed solution

▶Key Features
⦁ Practical recipes on training different neural network models and tuning them for optimal performance
⦁ Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more
⦁ A hands-on guide covering the common as well as the not so common problems in deep learning using Python

▶What you need for this book
This book is focused on AI in Python, as opposed to Python itself. We have used Python 3 to build various applications. We focus on how to utilize various Python libraries in the best possible way to build real-world applications. In that spirit, we have tried to keep all of the code as friendly and readable as possible. We feel that this will enable our readers to easily understand the code and readily use it in different scenarios.

▶Who This Book Is For
This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. A thorough understanding of machine learning concepts and Python libraries such as NumPy, SciPy, and scikit-learn is expected. Additionally, basic knowledge of linear algebra and calculus is desired.

▶What this book covers
⦁ Chapter 1, Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks, includes information and recipes related to environments and GPU computing. It is a must-read for readers who have issues in setting up their environment on different platforms.
⦁ Chapter 2, Feed-Forward Neural Networks, provides a collection of recipes related to feedforward neural networks and forms the basis for the other chapters. The focus of this chapter is to provide solutions to common implementation problems for different network topologies.
⦁ Chapter 3, Convolutional Neural Networks, focuses on convolutional neural networks and their application in computer vision. It provides recipes on techniques and optimizations used in CNNs.
⦁ Chapter 4, Recurrent Neural Networks, provides a collection of recipes related to recurrent neural networks. These include LSTM networks and GRUs. The focus of this chapter is to provide solutions to common implementation problems for recurrent neural networks.
⦁ Chapter 5, Reinforcement Learning, covers recipes for reinforcement learning with neural networks. The recipes in this chapter introduce the concepts of deep reinforcement learning in a single-agent world.
⦁ Chapter 6, Generative Adversarial Networks, provides a collection of recipes related to unsupervised learning problems. These include generative adversarial networks for image generation and super resolution.
⦁ Chapter 7, Computer Vision, contains recipes related to processing data encoded as images, including video frames. Classic techniques of processing image data using Python will be provided, along with best-of-class solutions for detection, classification, and segmentation.
⦁ Chapter 8, Natural Language Processing, contains recipes related to textual data processing. This includes recipes related to textual feature representation and processing, including word embeddings and text data storage.
⦁ Chapter 9, Speech Recognition and Video Analysis, covers recipes related to stream data processing. This includes audio, video, and frame sequences
⦁ Chapter 10, Time Series and Structured Data, provides recipes related to number crunching. This includes sequences and time series.
⦁ Chapter 11, Game Playing Agents and Robotics, focuses on state-of-the-art deep learning research applications. This includes recipes related to game-playing agents in a multi-agent environment (simulations) and autonomous vehicles.
⦁ Chapter 12, Hyperparameter Selection, Tuning, and Neural Network Learning, illustrates recipes on the many aspects involved in the learning process of a neural network. The overall objective of the recipes is to provide very neat and specific tricks to boost network performance.
⦁ Chapter 13, Network Internals, covers the internals of a neural network. This includes tensor decomposition, weight initialization, topology storage, bottleneck features, and corresponding embedding.
⦁ Chapter 14, Pretrained Models, covers popular deep learning models such as VGG-16 and Inception V4.

작가 소개

Indra den Bakker is an experienced deep learning engineer and mentor. He is the founder of 23insights—part of NVIDIA's Inception program—a machine learning start-up building solutions that transform the world’s most important industries. For Udacity, he mentors students pursuing a Nanodegree in deep learning and related fields, and he is also responsible for reviewing student projects. Indra has a background in computational intelligence and worked for several years as a data scientist for IPG Mediabrands and Screen6 before founding 23insights.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 챗GPT, 글쓰기 코치가 되어 줘 (이석현)
  • 실전 ComfyUI (우희철)
  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 네트워크 (강민철)
  • 프로덕트 매니지먼트의 기술 (맷 르메이, 권원상)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전