본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Python: Deeper Insights into Machine Learning 상세페이지

[체험판] Python: Deeper Insights into Machine Learning

Leverage benefits of machine learning techniques using Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2016.08.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 35 쪽
  • 2.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781787128545
ECN
-

이 작품의 시리즈더보기

  • [체험판] Python: Deeper Insights into Machine Learning (Sebastian Raschk, David Julian)
  • Python: Deeper Insights into Machine Learning (Sebastian Raschk, David Julian)
[체험판] Python: Deeper Insights into Machine Learning

작품 정보

▶Book Description
Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project.

The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems.
The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it’s time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems.
At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering.

▶About This Book
⦁ Improve and optimise machine learning systems using effective strategies.
⦁ Develop a strategy to deal with a large amount of data.
⦁ Use of Python code for implementing a range of machine learning algorithms and techniques.

▶What You Will Learn
⦁ Learn to write clean and elegant Python code that will optimize the strength of your algorithms
⦁ Uncover hidden patterns and structures in data with clustering
⦁ Improve accuracy and consistency of results using powerful feature engineering techniques
⦁ Gain practical and theoretical understanding of cutting-edge deep learning algorithms
⦁ Solve unique tasks by building models
⦁ Get grips on the machine learning design process

▶Who This Book Is For
This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts.

▶Style and approach
This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.

▶What this book covers
⦁ Module 1, Python Machine Learning, discusses the essential machine algorithms for classification and provides practical examples using scikit-learn. It teaches you to prepare variables of different types and also speaks about polynomial regression and tree-based approaches. This module focuses on open source Python library that allows us to utilize multiple cores of modern GPUs.
⦁ Module 2, Designing Machine Learning Systems with Python, acquaints you with large library of packages for machine learning tasks. It introduces broad topics such as big data, data properties, data sources, and data processing .You will further explore models that form the foundation of many advanced nonlinear techniques. This module will help you in understanding model selection and parameter tuning techniques that could help in various case studies.
⦁ Module 3, Advanced Machine Learning with Python, helps you to build your skill with deep architectures by using stacked denoising autoencoders. This module is a blend of semi-supervised learning techniques, RBM and DBN algorithms .Further this focuses on tools and techniques which will help in making consistent working process.

작가 소개

▶About the Author
⦁ Sebastian Raschka
Sebastian Raschka, author of the bestselling book, Python Machine Learning, has many years of experience with coding in Python, and he has given several seminars on the practical applications of data science, machine learning, and deep learning, including a machine learning tutorial at SciPy - the leading conference for scientific computing in Python.
While Sebastian's academic research projects are mainly centered around problem-solving in computational biology, he loves to write and talk about data science, machine learning, and Python in general, and he is motivated to help people develop data-driven solutions without necessarily requiring a machine learning background.
His work and contributions have recently been recognized by the departmental outstanding graduate student award 2016-2017, as well as the ACM Computing Reviews' Best of 2016 award. In his free time, Sebastian loves to contribute to open source projects, and the methods that he has implemented are now successfully used in machine learning competitions, such as Kaggle
⦁ David Julian
David Julian is currently working on a machine learning project with Urban Ecological Systems Ltd and Blue Smart Farms ( http://www.bluesmartfarms.com.au) to detect and predict insect infestation in greenhouse crops. Dave is a technology consultant, trainer, and musician. Dave has over 15 years' experience as a programmer, web developer, and in teaching small groups. He is proficient in HTML/CSS/JavaScript and PHP and is also an Python enthusiast. Dave is currently investigating data science applications using the Python programming language and relevant machine learning and data science packages. Dave has built virtual private networks and mail servers and managed Windows networks. He has authored a book for us titled Designing Machine Learning Systems with Python and has also been a Technical Reviewer for one of our books, Python Machine Learning.
⦁John Hearty
John Hearty is a consultant in digital industries with substantial expertise in data science and infrastructure engineering. Having started out in mobile gaming, he was drawn to the challenge of AAA console analytics.
Keen to start putting advanced machine learning techniques into practice, he signed on with Microsoft to develop player modelling capabilities and big data infrastructure at an Xbox studio. His team made significant strides in engineering and data science that were replicated across Microsoft Studios. Some of the more rewarding initiatives he led included player skill modelling in asymmetrical games, and the creation of player segmentation models for individualized game experiences.
Eventually John struck out on his own as a consultant offering comprehensive infrastructure and analytics solutions for international client teams seeking new insights or data-driven capabilities. His favourite current engagement involves creating predictive models and quantifying the importance of user connections for a popular social network.
After years spent working with data, John is largely unable to stop asking questions. In his own time, he routinely builds ML solutions in Python to fulfil a broad set of personal interests. These include a novel variant on the StyleNet computational creativity algorithm and solutions for algo-trading and geolocation-based recommendation. He currently lives in the UK.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! -모델링편- (나츠모리 카츠, 김모세)
  • 소문난 명강의 : 크리핵티브의 한 권으로 끝내는 웹 해킹 바이블 (하동민)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 플러터 엔지니어링 (마지드 하지안, 한국 플러터 커뮤니티)
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! 카툰 렌더링편 (나츠모리 카츠, 김모세)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • MCP로 똑똑하게 일하는 법 (케이트리)
  • AI 에이전트 생태계 (이주환)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 혼자 공부하는 네트워크 (강민철)
  • Do it! 커서로 시작하는 AI 코딩 입문 (고경희)
  • Do it! C++ 완전 정복 (문종채, 조규남)
  • 비전공자를 위한 이해할 수 있는 IT 지식 (최원영)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전