본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] TensorFlow 1.x Deep Learning Cookbook 상세페이지

[체험판] TensorFlow 1.x Deep Learning Cookbook

Over 90 unique recipes to solve artificial-intelligence driven problems with Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.12.12 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 71 쪽
  • 38.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788291866
ECN
-

이 작품의 시리즈더보기

  • [체험판] TensorFlow 1.x Deep Learning Cookbook (Antonio Gulli, Amita Kapoor)
  • TensorFlow 1.x Deep Learning Cookbook (Antonio Gulli, Amita Kapoor)
[체험판] TensorFlow 1.x Deep Learning Cookbook

작품 정보

▶Book Description
Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain.
In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow.
With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future.
By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more.

▶What You Will Learn
⦁ Install TensorFlow and use it for CPU and GPU operations
⦁ Implement DNNs and apply them to solve different AI-driven problems.
⦁ Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code.
⦁ Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box.
⦁ Use different regression techniques for prediction and classification problems
⦁ Build single and multilayer perceptrons in TensorFlow
⦁ Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases.
⦁ Learn how restricted Boltzmann Machines can be used to recommend movies.
⦁ Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection.
⦁ Master the different reinforcement learning methods to implement game playing agents.
⦁ GANs and their implementation using TensorFlow.

▶Key Features
⦁ Skill up and implement tricky neural networks using Google's TensorFlow 1.x
⦁ An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more.
⦁ Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment

▶Who This Book Is For
This book is intended for data scientists, machine learning practitioners, and deep learning enthusiasts who want to perform machine learning tasks on a regular basis. People who are
slightly familiar with deep neural networks and now want to gain expertise working with CNN and RNN will find this book useful.

▶What this book covers
⦁ Chapter 1, TensorFlow - An Introduction, discusses TensorFlow the Google's open source framework, and why it is useful for deep learning. We will discuss how to install TensorFlow on MAC, Windows and Ubuntu for both CPU and GPU. We will also discuss
other python packages that we will use throughout the book. We will explain the two components of TensorFlow codes, the definition of graph and its execution. We will learn about using the TensorBoard to see the graph structure. We will understand the difference
between TensorFlow constants, variables and placeholders. And we will also get a taste of TensorFlow estimators.
⦁ Chapter 2 , Regression, talks about regression and its applications. We will discuss the concepts involved in regression, understand how it is different from clustering and classification. We will learn about different types of loss functions possible and how to implement them in Tensorflow. We learn how to implement L1 and L2 regularizations. We will discuss the gradient descent algorithm, learn how to optimize it and implement it in Tensorflow. We will briefly learn about cross-entropy function and its implementation.
⦁ Chapter 3 , Neural Networks - Perceptron, covers artificial neural networks and explains why it can do the wonderful tasks as claimed recently by DNN. We will learn about different choices of activation functions. We will use all this to build a simple perceptron and use it
for function modeling. We will learn about regularization of data before training. We will also learn to build a multilayer perceptron (MLP) layer by layer. We will see how the autodifferentiator
of TensorFlow makes our work easier.
⦁ Chapter 4 , TensorFlow - Convolutional Neural Networks, discusses the process of convolution and how it is able to extract features. We will learn about three important layers of CNN:
convolutional layers, pooling layer and fully connected layer. We will also learn about dropout, how it can increase performance and different CNN architectures such as LeNET and GoogleNET.
⦁ Chapter 5, CNN in Action, covers some wow success stories of CNN like face recognition. We will write a recipe for using CNNs for sentiment analysis. We will discuss pre-tuning CNN and learn how to implement transfer learning. We will learn how to use VGG16 for
transfer learning. We will learn classification of images with VGGNet, ResNet, Inception and Xception. We will Generate music using dilated ConvNets, Wavenet and Nsynth. We will also learn how to do Visual Q & A. We will learn how to classify videos.
⦁ Chapter 6, Recurrent Neural Networks, discusses Recurrent Neural networks. We will learn the basic unit of RNNs the RNN cell. We will learn about word embeddings and time sequencing. We will briefly discuss LSTM networks. We will learn about seq2seq RNNs. We will learn how RNNs can be employed for machine translation, generating text, and predicting future values
⦁ Chapter 7, Unsupervised Learning, teaches the unsupervised learning paradigm. We will learn about clustering and dimensionality reduction. We will learn about techniques like Principal Component Analysis (PCA) and see how they can be used for dimensionality
reduction. We will learn about k-means clustering. We will understand the concept of Topographic maps and learn how to train self-organizing maps. We will learn about Restricted Boltzmann Machines (RBM). We will discuss the architecture and training of
RBMs. We learn how to stack RBMs to make Deep Belief Networks, and we will learn how to train them. We will train DBN using the concept of pre-training and fine tuning for emotion detection.
⦁ Chapter 8, Autoencoders, demystifies autoencoders. We will learn about autoencoders and their applications. We will discuss various real-life examples where auto-encoders can be used. We will discuss the process of encoding and subsequent reconstruction. We will learn
about reconstruction error. We will learn about sparse autoencoders, the concept of KL divergence. We will learn Denoising Autoencoders and use them to reconstruct clean images given noisy images. We will learn how to build Convolutional Autoencoders and Stacked Autoencoders.
⦁ Chapter 9, Reinforcement Learning, covers different reinforcement learning algorithms. We will learn the Q-learning algorithm. We will discuss Bellman-Ford equation and how to choose learning rate, discount factor. We will learn how to use OpenAI gym framework. We
will learn about the concepts of Experience Replay and buffering to implement valueiteration Q network. We will use Q learning and policy gradients to build game playing agents. And finally, we will learn how to make our own Deep Q-learning Network (DQN).
A brief description of AlphaGo Zero and its grand win.
⦁ Chapter 10, TensorFlow Mobile Computation, covers TensorFlow mobile. We will learn about different applications of mobile deep learning. We will learn how to use Tensorflow with Android studio on Windows platform. We will learn how to use Tensorflow along with
XCode to make IOS based apps. We will learn how to optimize the Tensorflow graphs for mobile devices. We will also learn how to transform Tensorflow graphs for mobile devices.
⦁ Chapter 11, TensorFlow –. Generative Adversarial Networks (GANs), Variational Autoencoders, and Capsule networks, starts with generative adversarial networks and their strength over other DNNs. We explore different predictive models. We understand the motivation behind GANs and their working intuitively. We learn about the basic GAN architecture. We will explore some very cool applications of GANs. We will learn about another generative network the Variational Autoencoder. Lastly, we will learn about the recently proposed Capsule Networks
⦁ Chapter 12, Distributed TensorFlow and Cloud Deep Learning, explains the cloud environment, dockers, containers, and how to use them. We learn how to work with distributed Tensorflow with multiple GPUs, and multiple servers. We learn how to setup AWS for deep
learning. We learn how to setup Google cloud for deep learning applications. We learn how to setup Microsoft Azure cloud for deep learning applications. We learn about other available cloud services

작가 소개

⦁ Antonio Gulli
Antonio Gulli is a transformational software executive and business leader with a passion for establishing and managing global technological talent for innovation and execution. He is an expert in search engines, online services, machine learning, information retrieval, analytics, and cloud computing. So far, he has been lucky enough to gain professional experience in four different countries in Europe and manage teams in six different countries in Europe and America. Currently, he works as site lead and director of cloud in Google Warsaw, driving European efforts for Serverless, Kubernetes, and Google Cloud UX. Previously, Antonio helped to innovate academic search as the vice president for Elsevier, a worldwide leading publisher. Before that, he drove query suggestions and news search as a principal engineer for Microsoft. Earlier, he served as the CTO for Ask, driving multimedia and news search. Antonio has filed for 20+ patents, published multiple academic papers, and served as a senior PC member in multiple international conferences. He truly believes that to be successful, you must have a great combination of management, research skills, just-get-it-done, and selling attitude
⦁ Amita Kapoor
Amita Kapoor is an associate professor in the Department of Electronics, SRCASW, University of Delhi. She has been actively teaching neural networks for the last 20 years. She did her master's in electronics in 1996 and PhD in 2011. During her PhD, she was awarded the prestigious DAAD fellowship to pursue a part of her research work in Karlsruhe Institute of Technology, Karlsruhe, Germany. She had been awarded the best presentation award at International Conference Photonics 2008 for her paper. She is a member of professional bodies such as OSA (Optical Society of America), IEEE (Institute of Electrical and Electronics Engineers), INNS (International Neural Network Society), and ISBS (Indian Society for Buddhist Studies). Amita has more than 40 publications in international journals and conferences to her credit. Her present research areas include machine learning, artificial intelligence, neural networks, robotics, Buddhism (philosophy and psychology) and ethics in AI.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 실전 ComfyUI (우희철)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전