본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Practical Convolutional Neural Network 상세페이지

[체험판] Practical Convolutional Neural Network

Implement advanced deep learning models using Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.02.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 22 쪽
  • 21.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788394147
ECN
-

이 작품의 시리즈더보기

  • [체험판] Practical Convolutional Neural Network (Mohit Sewak, Md. Rezaul Karim)
  • Practical Convolutional Neural Network (Mohit Sewak, Md. Rezaul Karim)
[체험판] Practical Convolutional Neural Network

작품 정보

▶Book Description
Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models.
This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.
Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision.
By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets

▶What You Will Learn
⦁ From CNN basic building blocks to advanced concepts understand practical areas they can be applied to
⦁ Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it
⦁ Learn different algorithms that can be applied to Object Detection, and Instance Segmentation
⦁ Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy
⦁ Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more
⦁ Understand the working of generative adversarial networks and how it can create new, unseen images

▶Key Features
⦁ Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques
⦁ Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more
⦁ Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models

▶Who This Book Is For
This book is for data scientists, machine learning, and deep learning practitioners, and cognitive and artificial intelligence enthusiasts who want to move one step further in building CNNs. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep
learning concepts and Python programming language is expected.

▶What this book covers
⦁ Chapter 1, Deep Neural Networks - Overview, it gives a quick refresher of the science of deep neural networks and different frameworks that can be used to implement such networks, with the mathematics behind them.
⦁ Chapter 2, Introduction to Convolutional Neural Networks, it introduces the readers to convolutional neural networks and shows how deep learning can be used to extract insights from images.
⦁ Chapter 3, Build Your First CNN and Performance Optimization, constructs a simple CNN model for image classification from scratch, and explains how to tune hyperparameters and optimize training time and performance of CNNs for improved efficiency and accuracy
respectively.
⦁ Chapter 4, Popular CNN Model Architectures, shows the advantages and working of different popular (and award winning) CNN architectures, how they differ from each other, and how to use them.
⦁ Chapter 5, Transfer Learning, teaches you to take an existing pretrained network and adapt it to a new and different dataset. There is also a custom classification problem for a real-life application using a technique called transfer learning.
⦁ Chapter 6, Autoencoders for CNN, introduces an unsupervised learning technique called autoencoders. We walk through different applications of autoencoders for CNN, such as image compression.
⦁ Chapter 7, Object Detection and Instance Segmentation with CNN, teaches the difference between object detection, instance segmentation, and image classification. We then learn multiple techniques for object detection and instance segmentation with CNNs.
⦁ Chapter 8, GAN—.Generating New Images with CNN, explores generative CNN Networks, and then we combine them with our learned discriminative CNN networks to create new images with CNN/GAN.
⦁ Chapter 9, Attention Mechanism for CNN and Visual Models, teaches the intuition behind attention in deep learning and learn how attention-based models are used to implement some advanced solutions (image captioning and RAM). We also understand the different types of attention and the role of reinforcement learning with respect to the hard attention mechanism.

작가 소개

⦁ Mohit Sewak
Mohit Sewak is a Sr. Cognitive Data Scientist with IBM, and a Ph.D. scholar in AI & CS with BITS Pilani. He holds several Patents and Publications in AI, Deep Learning, and Machine Learning. He has been the Lead Data Scientist for some of the very successful global AI/ ML software and Industry solutions and had been earlier engaged with solutioning and research for Watson Cognitive Commerce product line. He has 14 years of very rich experience in architecting and solutioning with technologies like TensorFlow, Torch, Caffe, Theano, Keras, Watson and others.

⦁ Md. Rezaul Karim
Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a Researcher at the Insight Centre for Data Analytics, Ireland. Earlier, he worked as a Lead Engineer at Samsung Electronics, Korea.
He has 9 years of R&D experience with C++, Java, R, Scala, and Python. He has published several research papers concerning bioinformatics, big data, and deep learning. He has practical working experience with Spark, Zeppelin, Hadoop, Keras, Scikit-Learn, TensorFlow, DeepLearning4j, MXNet, and H2O.

⦁ Pradeep Pujari
Pradeep Pujari is machine learning engineer at Walmart Labs and distinguished member of ACM. His core domain expertise is in information retrieval, machine learning and natural language processing. In off hours, he loves exploring AI technologies, enjoys reading and mentoring.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 실전 ComfyUI (우희철)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전