본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Practical Convolutional Neural Network 상세페이지

[체험판] Practical Convolutional Neural Network

Implement advanced deep learning models using Python

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.02.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 22 쪽
  • 21.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788394147
UCI
-

이 작품의 시리즈더보기

  • [체험판] Practical Convolutional Neural Network (Mohit Sewak, Md. Rezaul Karim)
  • Practical Convolutional Neural Network (Mohit Sewak, Md. Rezaul Karim)
[체험판] Practical Convolutional Neural Network

작품 정보

▶Book Description
Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models.
This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.
Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision.
By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets

▶What You Will Learn
⦁ From CNN basic building blocks to advanced concepts understand practical areas they can be applied to
⦁ Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it
⦁ Learn different algorithms that can be applied to Object Detection, and Instance Segmentation
⦁ Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy
⦁ Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more
⦁ Understand the working of generative adversarial networks and how it can create new, unseen images

▶Key Features
⦁ Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques
⦁ Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more
⦁ Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models

▶Who This Book Is For
This book is for data scientists, machine learning, and deep learning practitioners, and cognitive and artificial intelligence enthusiasts who want to move one step further in building CNNs. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep
learning concepts and Python programming language is expected.

▶What this book covers
⦁ Chapter 1, Deep Neural Networks - Overview, it gives a quick refresher of the science of deep neural networks and different frameworks that can be used to implement such networks, with the mathematics behind them.
⦁ Chapter 2, Introduction to Convolutional Neural Networks, it introduces the readers to convolutional neural networks and shows how deep learning can be used to extract insights from images.
⦁ Chapter 3, Build Your First CNN and Performance Optimization, constructs a simple CNN model for image classification from scratch, and explains how to tune hyperparameters and optimize training time and performance of CNNs for improved efficiency and accuracy
respectively.
⦁ Chapter 4, Popular CNN Model Architectures, shows the advantages and working of different popular (and award winning) CNN architectures, how they differ from each other, and how to use them.
⦁ Chapter 5, Transfer Learning, teaches you to take an existing pretrained network and adapt it to a new and different dataset. There is also a custom classification problem for a real-life application using a technique called transfer learning.
⦁ Chapter 6, Autoencoders for CNN, introduces an unsupervised learning technique called autoencoders. We walk through different applications of autoencoders for CNN, such as image compression.
⦁ Chapter 7, Object Detection and Instance Segmentation with CNN, teaches the difference between object detection, instance segmentation, and image classification. We then learn multiple techniques for object detection and instance segmentation with CNNs.
⦁ Chapter 8, GAN—.Generating New Images with CNN, explores generative CNN Networks, and then we combine them with our learned discriminative CNN networks to create new images with CNN/GAN.
⦁ Chapter 9, Attention Mechanism for CNN and Visual Models, teaches the intuition behind attention in deep learning and learn how attention-based models are used to implement some advanced solutions (image captioning and RAM). We also understand the different types of attention and the role of reinforcement learning with respect to the hard attention mechanism.

작가 소개

⦁ Mohit Sewak
Mohit Sewak is a Sr. Cognitive Data Scientist with IBM, and a Ph.D. scholar in AI & CS with BITS Pilani. He holds several Patents and Publications in AI, Deep Learning, and Machine Learning. He has been the Lead Data Scientist for some of the very successful global AI/ ML software and Industry solutions and had been earlier engaged with solutioning and research for Watson Cognitive Commerce product line. He has 14 years of very rich experience in architecting and solutioning with technologies like TensorFlow, Torch, Caffe, Theano, Keras, Watson and others.

⦁ Md. Rezaul Karim
Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a Researcher at the Insight Centre for Data Analytics, Ireland. Earlier, he worked as a Lead Engineer at Samsung Electronics, Korea.
He has 9 years of R&D experience with C++, Java, R, Scala, and Python. He has published several research papers concerning bioinformatics, big data, and deep learning. He has practical working experience with Spark, Zeppelin, Hadoop, Keras, Scikit-Learn, TensorFlow, DeepLearning4j, MXNet, and H2O.

⦁ Pradeep Pujari
Pradeep Pujari is machine learning engineer at Walmart Labs and distinguished member of ACM. His core domain expertise is in information retrieval, machine learning and natural language processing. In off hours, he loves exploring AI technologies, enjoys reading and mentoring.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • 요즘 당근 AI 개발 (당근 팀)
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 혼자 공부하는 네트워크 (강민철)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • 쏙쏙 들어오는 자료구조 (마르첼로 라 로카, 김성원)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 연필과 종이로 풀어보는 딥러닝 수학 워크북 214제 (톰 예(Tom yeh) )
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 그림으로 배우는 StatQuest 신경망 & AI 강의 (조시 스타머, 김태헌)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전