본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Artificial Intelligence with Python 상세페이지

Artificial Intelligence with Python

A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

  • 관심 0
소장
전자책 정가
26,000원
판매가
26,000원
출간 정보
  • 2017.01.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 437 쪽
  • 32.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781786469670
ECN
-

이 작품의 시리즈더보기

  • [체험판] Artificial Intelligence with Python (Prateek Joshi)
  • Artificial Intelligence with Python (Prateek Joshi)
Artificial Intelligence with Python

작품 정보

▶Book Description
Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you’ll learn about various algorithms that can be used to build Artificial Intelligence applications.
During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that’s based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide!

▶What You Will Learn
⦁ Realize different classification and regression techniques
⦁ Understand the concept of clustering and how to use it to automatically segment data
⦁ See how to build an intelligent recommender system
⦁ Understand logic programming and how to use it
⦁ Build automatic speech recognition systems
⦁ Understand the basics of heuristic search and genetic programming
⦁ Develop games using Artificial Intelligence
⦁ Learn how reinforcement learning works
⦁ Discover how to build intelligent applications centered on images, text, and time series data
⦁ See how to use deep learning algorithms and build applications based on it

▶Key Features
⦁ Step into the amazing world of intelligent apps using this comprehensive guide
⦁ Enter the world of Artificial Intelligence, explore it, and create your own applications
⦁ Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time

▶Who This Book Is For
This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks.

▶What this book covers
⦁ Chapter 1, Introduction to Artificial Intelligence, teaches you various introductory concepts in artificial intelligence. It talks about applications, branches, and modeling of Artificial Intelligence. It walks the reader through the installation of necessary Python packages.
⦁ Chapter 2, Classification and Regression Using Supervised Learning, covers various supervised learning techniques for classification and regression. You will learn how to analyze income
data and predict housing prices.
⦁ Chapter 3, Predictive Analytics with Ensemble Learning, explains predictive modeling techniques using Ensemble Learning, particularly focused on Random Forests. We will learn how to apply these techniques to predict traffic on the roads near sports stadiums.
⦁ Chapter 4, Detecting Patterns with Unsupervised Learning, covers unsupervised learning
algorithms including K-means and Mean Shift Clustering. We will learn how to apply these algorithms to stock market data and customer segmentation.
⦁ Chapter 5, Building Recommender Systems, illustrates algorithms used to build recommendation engines. You will learn how to apply these algorithms to collaborative filtering and movie recommendations.
⦁ Chapter 6, Logic Programming, covers the building blocks of logic programming. We will see various applications, including expression matching, parsing family trees, and solving puzzles.
⦁ Chapter 7, Heuristic Search Techniques, shows heuristic search techniques that are used to search the solution space. We will learn about various applications such as simulated annealing, region coloring, and maze solving.
⦁ Chapter 8, Genetic Algorithms, covers evolutionary algorithms and genetic programming. We will learn about various concepts such as crossover, mutation, and fitness functions. We will then use these concepts to solve the symbol regression problem and build an intelligent robot controller.
⦁ Chapter 9, Building Games with Artificial Intelligence, teaches you how to build games with artificial intelligence. We will learn how to build various games including Tic Tac Toe, Connect Four, and Hexapawn.
⦁ Chapter 10, Natural Language Processing, covers techniques used to analyze text data including tokenization, stemming, bag of words, and so on. We will learn how to use these techniques to do sentiment analysis and topic modeling.
⦁ Chapter 11, Probabilistic Reasoning for Sequential Data, shows you techniques used to analyze time series and sequential data including Hidden Markov models and Conditional Random Fields. We will learn how to apply these techniques to text sequence analysis and stock
market predictions.
⦁ Chapter 12, Building A Speech Recognizer, demonstrates algorithms used to analyze speech data. We will learn how to build speech recognition systems.
⦁ Chapter 13, Object Detection and Tracking, It covers algorithms related to object detection and tracking in live video. We will learn about various techniques including optical flow, face tracking, and eye tracking.
⦁ Chapter 14, Artificial Neural Networks, covers algorithms used to build neural networks. We will learn how to build an Optical Character Recognition system using neural networks.
⦁ Chapter 15, Reinforcement Learning, teaches the techniques used to build reinforcement learning systems. We will learn how to build learning agents that can learn from interacting with the environment.
⦁ Chapter 16, Deep Learning with Convolutional Neural Networks, covers algorithms used to build deep learning systems using Convolutional Neural Networks. We will learn how to use TensorFlow to build neural networks. We will then use it to build an image classifier using convolutional neural networks.

작가 소개

⦁ Prateek Joshi
Prateek Joshi is an artificial intelligence researcher, published author of five books, and TEDx speaker. He is the founder of Pluto AI, a venture-funded Silicon Valley startup building an analytics platform for smart water management powered by deep learning. His work in this field has led to patents, tech demos, and research papers at major IEEE conferences. He has been an invited speaker at technology and entrepreneurship conferences including TEDx, AT&T Foundry, Silicon Valley Deep Learning, and Open Silicon Valley. Prateek has also been featured as a guest author in prominent tech magazines.
His tech blog has received more than 1.2 million page views from 200 over countries and has over 6,600+ followers. He frequently writes on topics such as artificial intelligence, Python programming, and abstract mathematics. He is an avid coder and has won many hackathons utilizing a wide variety of technologies. He graduated from University of Southern California with a master's degree specializing in artificial intelligence. He has worked at companies such as Nvidia and Microsoft Research.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전