본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Artificial Intelligence with Python 상세페이지

[체험판] Artificial Intelligence with Python

A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.01.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 43 쪽
  • 6.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781786469670
ECN
-

이 작품의 시리즈더보기

  • [체험판] Artificial Intelligence with Python (Prateek Joshi)
  • Artificial Intelligence with Python (Prateek Joshi)
[체험판] Artificial Intelligence with Python

작품 정보

▶Book Description
Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you’ll learn about various algorithms that can be used to build Artificial Intelligence applications.
During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that’s based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide!

▶What You Will Learn
⦁ Realize different classification and regression techniques
⦁ Understand the concept of clustering and how to use it to automatically segment data
⦁ See how to build an intelligent recommender system
⦁ Understand logic programming and how to use it
⦁ Build automatic speech recognition systems
⦁ Understand the basics of heuristic search and genetic programming
⦁ Develop games using Artificial Intelligence
⦁ Learn how reinforcement learning works
⦁ Discover how to build intelligent applications centered on images, text, and time series data
⦁ See how to use deep learning algorithms and build applications based on it

▶Key Features
⦁ Step into the amazing world of intelligent apps using this comprehensive guide
⦁ Enter the world of Artificial Intelligence, explore it, and create your own applications
⦁ Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time

▶Who This Book Is For
This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks.

▶What this book covers
⦁ Chapter 1, Introduction to Artificial Intelligence, teaches you various introductory concepts in artificial intelligence. It talks about applications, branches, and modeling of Artificial Intelligence. It walks the reader through the installation of necessary Python packages.
⦁ Chapter 2, Classification and Regression Using Supervised Learning, covers various supervised learning techniques for classification and regression. You will learn how to analyze income
data and predict housing prices.
⦁ Chapter 3, Predictive Analytics with Ensemble Learning, explains predictive modeling techniques using Ensemble Learning, particularly focused on Random Forests. We will learn how to apply these techniques to predict traffic on the roads near sports stadiums.
⦁ Chapter 4, Detecting Patterns with Unsupervised Learning, covers unsupervised learning
algorithms including K-means and Mean Shift Clustering. We will learn how to apply these algorithms to stock market data and customer segmentation.
⦁ Chapter 5, Building Recommender Systems, illustrates algorithms used to build recommendation engines. You will learn how to apply these algorithms to collaborative filtering and movie recommendations.
⦁ Chapter 6, Logic Programming, covers the building blocks of logic programming. We will see various applications, including expression matching, parsing family trees, and solving puzzles.
⦁ Chapter 7, Heuristic Search Techniques, shows heuristic search techniques that are used to search the solution space. We will learn about various applications such as simulated annealing, region coloring, and maze solving.
⦁ Chapter 8, Genetic Algorithms, covers evolutionary algorithms and genetic programming. We will learn about various concepts such as crossover, mutation, and fitness functions. We will then use these concepts to solve the symbol regression problem and build an intelligent robot controller.
⦁ Chapter 9, Building Games with Artificial Intelligence, teaches you how to build games with artificial intelligence. We will learn how to build various games including Tic Tac Toe, Connect Four, and Hexapawn.
⦁ Chapter 10, Natural Language Processing, covers techniques used to analyze text data including tokenization, stemming, bag of words, and so on. We will learn how to use these techniques to do sentiment analysis and topic modeling.
⦁ Chapter 11, Probabilistic Reasoning for Sequential Data, shows you techniques used to analyze time series and sequential data including Hidden Markov models and Conditional Random Fields. We will learn how to apply these techniques to text sequence analysis and stock
market predictions.
⦁ Chapter 12, Building A Speech Recognizer, demonstrates algorithms used to analyze speech data. We will learn how to build speech recognition systems.
⦁ Chapter 13, Object Detection and Tracking, It covers algorithms related to object detection and tracking in live video. We will learn about various techniques including optical flow, face tracking, and eye tracking.
⦁ Chapter 14, Artificial Neural Networks, covers algorithms used to build neural networks. We will learn how to build an Optical Character Recognition system using neural networks.
⦁ Chapter 15, Reinforcement Learning, teaches the techniques used to build reinforcement learning systems. We will learn how to build learning agents that can learn from interacting with the environment.
⦁ Chapter 16, Deep Learning with Convolutional Neural Networks, covers algorithms used to build deep learning systems using Convolutional Neural Networks. We will learn how to use TensorFlow to build neural networks. We will then use it to build an image classifier using convolutional neural networks.

작가 소개

⦁ Prateek Joshi
Prateek Joshi is an artificial intelligence researcher, published author of five books, and TEDx speaker. He is the founder of Pluto AI, a venture-funded Silicon Valley startup building an analytics platform for smart water management powered by deep learning. His work in this field has led to patents, tech demos, and research papers at major IEEE conferences. He has been an invited speaker at technology and entrepreneurship conferences including TEDx, AT&T Foundry, Silicon Valley Deep Learning, and Open Silicon Valley. Prateek has also been featured as a guest author in prominent tech magazines.
His tech blog has received more than 1.2 million page views from 200 over countries and has over 6,600+ followers. He frequently writes on topics such as artificial intelligence, Python programming, and abstract mathematics. He is an avid coder and has won many hackathons utilizing a wide variety of technologies. He graduated from University of Southern California with a master's degree specializing in artificial intelligence. He has worked at companies such as Nvidia and Microsoft Research.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 이지 러스트 (데이브 매클라우드, 이지호)
  • 한 권으로 끝내는 실전 LLM 파인튜닝 (강다솔)
  • 무엇이 1등 팀을 만드는가? (애디 오스마니, LINE SQE 팀)
  • 켄트 벡의 Tidy First? (켄트 벡, 안영회)
  • 우아한 타입스크립트 with 리액트 (우아한형제들 웹프론트개발그룹, 김민태)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • Real MySQL 8.0 (1권) (백은빈, 이성욱)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • 개정판 | 리액트 네이티브 (온개발팀)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • 밑바닥부터 시작하는 딥러닝 5 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전