본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Feature Engineering Made Easy 상세페이지

Feature Engineering Made Easy

Identify unique features from your dataset in order to build powerful machine learning

  • 관심 0
소장
전자책 정가
12,000원
판매가
12,000원
출간 정보
  • 2018.01.22 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 310 쪽
  • 6.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781787286474
ECN
-

이 작품의 시리즈더보기

  • [체험판] Feature Engineering Made Easy (Sinan Ozdemir, Divya Susarla)
  • Feature Engineering Made Easy (Sinan Ozdemir, Divya Susarla)
Feature Engineering Made Easy

작품 정보

▶Book Description
Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective.

You will start with understanding your data—often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data.

By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization.

▶What You Will Learn
- Identify and leverage different feature types
- Clean features in data to improve predictive power
- Understand why and how to perform feature selection, and model error analysis
- Leverage domain knowledge to construct new features
- Deliver features based on mathematical insights
- Use machine-learning algorithms to construct features
- Master feature engineering and optimization
- Harness feature engineering for real world applications through a structured case study

▶Key Features
- Design, discover, and create dynamic, efficient features for your machine learning application
- Understand your data in-depth and derive astonishing data insights with the help of this Guide
- Grasp powerful feature-engineering techniques and build machine learning systems

▶Who This Book Is For
If you are a data science professional or a machine learning engineer looking to strengthen your predictive analytics model, then this book is a perfect guide for you. Some basic understanding of the machine learning concepts and Python scripting would be enough to get started with this book.

▶What this book covers
- Chapter 1, Introduction to Feature Engineering, is an introduction to the basic terminology of feature engineering and a quick look at the types of problems we will be solving throughout this book.
- Chapter 2, Feature Understanding –. What's in My Dataset?, looks at the types of data we will encounter in the wild and how to deal with each one separately or together.
- Chapter 3, Feature Improvement - Cleaning Datasets, explains various ways to fill in missing data and how different techniques lead to different structural changes in data that may lead to poorer machine learning performance.
- Chapter 4, Feature Construction, is a look at how we can create new features based on what was already given to us in an effort to inflate the structure of data.
- Chapter 5, Feature Selection, shows quantitative measures to decide which features are worthy of being kept in our data pipeline.
- Chapter 6, Feature Transformations, uses advanced linear algebra and mathematical techniques to impose a rigid structure on data for the purpose of enhancing performance of our pipelines.
- Chapter 7, Feature Learning, covers the use of state-of-the-art machine learning and artificial intelligence learning algorithms to discover latent features of our data that few humans could fathom.
- Chapter 8, Case Studies, is an array of case studies shown in order to solidify the ideas of feature engineering.

작가 소개

- Sinan Ozdemir
Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own startup, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams.

After completing a Fellowship at the Y Combinator accelerator, Sinan spent most of his time working on his fast-growing company, while creating educational material for data science.

- Divya Susarla
Divya Susarla is an experienced leader in data methods, implementing and applying tactics across a range of industries and fields including investment management, social enterprise consulting, and wine marketing. She trained in data by way of specializing in Economics and Political Science at University of California, Irvine, cultivating a passion for teaching by developing an analytically based, international affairs curriculum for students through the Global Connect program.

Divya is currently focused on natural language processing and generation techniques at Kylie.ai, a startup helping clients automate their customer support conversations. When she is not busy working on building Kylie.ai and writing educational content, she spends her time traveling across the globe and experimenting with new recipes at her home in Berkeley, CA.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 실전 ComfyUI (우희철)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 제미나이 인공지능 프로그래밍 (후루카와 히데카즈, 하승민)
  • 오브젝트 (조영호)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전