본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

IPython Interactive Computing and Visualization Cookbook 2E 상세페이지

IPython Interactive Computing and Visualization Cookbook 2E

  • 관심 0
소장
전자책 정가
15,000원
판매가
15,000원
출간 정보
  • 2018.01.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 548 쪽
  • 11.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781785881930
UCI
-

이 작품의 시리즈더보기

  • [체험판] IPython Interactive Computing and Visualization Cookbook 2 (Cyrille Rossant)
  • IPython Interactive Computing and Visualization Cookbook 2E (Cyrille Rossant)
IPython Interactive Computing and Visualization Cookbook 2E

작품 정보

▶Book Description
Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform.

IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning.

The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.

▶What You Will Learn
- Master all features of the Jupyter Notebook
- Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments
- Visualize data and create interactive plots in the Jupyter Notebook
- Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more
- Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn)
- Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV
- Simulate deterministic and stochastic dynamical systems in Python
- Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory

▶Key Features
- Leverage the Jupyter Notebook for interactive data science and visualization
- Become an expert in high-performance computing and visualization for data analysis and scientific modeling
- A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations

▶Who This Book Is For
This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

▶What this book covers
▶ Part 1 – Interactive Computing with Jupyter
- Chapter 1, A Tour of Interactive Computing with Jupyter and IPython, contains a brief introduction to data analysis and numerical computing with IPython and Jupyter. It not only covers common packages such as Python, NumPy, pandas, and Matplotlib, but also advanced IPython/Jupyter topics such as interactive widgets in the Notebook, custom magic commands, configurable IPython extensions, and custom Jupyter kernels.
- Chapter 2, Best Practices in Interactive Computing, details best practices to write reproducible, high-quality code: task automation, version control with Git, workflows with IPython and Jupyter, unit testing, continuous integration, debugging, and other related topics. The importance of these subjects in computational research and data analysis cannot be overstated.
- Chapter 3, Mastering the Jupyter Notebook, covers topics related to the Jupyter Notebook, notably the Notebook format, notebook conversions, and interactive widgets.
- Chapter 4, Profiling and Optimization, covers methods to make your code faster and more efficient: CPU and memory profiling in Python, advanced optimization techniques with NumPy (including large array manipulations), and memory mapping of huge arrays. These techniques are essential for big data analysis.
- Chapter 5, High-Performance Computing, covers techniques to make your code much faster: code acceleration with Numba and Cython, wrapping C libraries in Python with ctypes, parallel computing with IPython and Dask, OpenMP, and General-Purpose Computing on Graphics Processing Units (GPGPU) with CUDA. The chapter ends with an introduction to the Julia language, a high-performance numerical computing programming language that can be used in the Jupyter Notebook.
- Chapter 6, Data Visualization, introduces several visualization or interactive visualization libraries, such as matplotlib, seaborn, bokeh, D3, Altair, and others.

▶ Part 2 – Standard Methods in Data Science and Applied Mathematics
- Chapter 7, Statistical Data Analysis, covers methods for getting insights into data. It introduces classic frequentist and Bayesian methods for hypothesis testing, parametric and nonparametric estimation, and model inference. The chapter leverages Python libraries such as pandas, SciPy, statsmodels, and PyMC. The last recipe introduces the statistical language R, which can be easily used in the Jupyter Notebook.
- Chapter 8, Machine Learning, covers methods to learn and make predictions from data. Using the scikit-learn Python package, this chapter illustrates fundamental data mining and machine learning concepts such as supervised and unsupervised learning, classification, regression, feature selection, feature extraction, overfitting, regularization, cross-validation, and grid search. Algorithms addressed in this chapter include logistic regression, Naive Bayes, K-nearest neighbors, support vector machines, random forests, and others. These methods are applied to various types of datasets: numerical data, images, and text.
- Chapter 9, Numerical Optimization, covers minimizing and maximizing mathematical functions. This topic is pervasive in data science, notably in statistics, machine learning, and signal processing. This chapter illustrates a few root-finding, minimization, and curve-fitting routines with SciPy.
- Chapter 10, Signal Processing, covers extracting relevant information from complex and noisy data. These steps are sometimes required prior to running statistical and data mining algorithms. This chapter introduces basic signal processing methods such as Fourier transforms and digital filters.
- Chapter 11, Image and Audio Processing, covers signal processing methods for images and sounds. It introduces image filtering, segmentation, computer vision, and face detection with scikit-image and OpenCV. It also presents methods for audio processing and synthesis.
- Chapter 12, Deterministic Dynamical Systems, describes the dynamical processes underlying particular types of data. It illustrates simulation techniques for discrete-time dynamical systems, as well as for ordinary differential equations and partial differential equations.
- Chapter 13, Stochastic Dynamical Systems, describes the dynamical random processes underlying particular types of data. It illustrates simulation techniques for discrete-time Markov chains, point processes, and stochastic differential equations.
- Chapter 14, Graphs, Geometry, and Geographic Information Systems, covers analysis and visualization methods for graphs, flight networks, road networks, maps, and geographic data.
- Chapter 15, Symbolic and Numerical Mathematics, introduces SymPy, a computer algebra system that brings symbolic computing to Python. The chapter ends with an introduction to Sage, another Python-based system for computational mathematics.

작가 소개

- Cyrille Rossant
Cyrille Rossant, PhD, is a neuroscience researcher and software engineer at University College London. He is a graduate of École Normale Supérieure, Paris, where he studied mathematics and computer science. He has also worked at Princeton University and Collège de France. While working on data science and software engineering projects, he has gained experience in numerical computing, parallel computing, and high-performance data visualization.

He is the author of Learning IPython for Interactive Computing and Data Visualization, Second Edition, Packt Publishing, the prequel of this cookbook.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 그림과 실습으로 배우는 쿠버네티스 입문 (타카하시 아오이 , 이동규)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • MCP 실전 활용 & 서버 개발 핵심 가이드 (AI튜터랩)
  • 기획에서 출시까지 FastAPI 개발 백서 (차경묵 )
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • AI 에이전트 생태계 (이주환)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 혼자서 PCB 만들기 (최영림, 이영주)
  • 스프링 부트 개발자 온보딩 가이드 (박상현)
  • Dify AI, 코드 없는 미래 (김정욱)
  • AWS 잘하는 개발자 되기 (김재욱)
  • SQLite, MCP, 바이브 코딩을 활용한 데이터 분석과 업무 자동화 (박찬규, 윤가희)
  • 요즘 바이브 코딩 커서 AI 30가지 프로그램 만들기 (박현규)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전