본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] R Programming By Example 상세페이지

[체험판] R Programming By Example

Practical, hands-on projects to help you get started with R

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.12.22 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 43 쪽
  • 5.9MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788291361
ECN
-

이 작품의 시리즈더보기

  • [체험판] R Programming By Example (Omar Trejo Navar)
  • R Programming By Example (Omar Trejo Navar)
[체험판] R Programming By Example

작품 정보

▶ Book Description
R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R.

We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization.

By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable.

▶ What You Will Learn
- Discover techniques to leverage R’s features, and work with packages
- Perform a descriptive analysis and work with statistical models using R
- Work efficiently with objects without using loops
- Create diverse visualizations to gain better understanding of the data
- Understand ways to produce good visualizations and create reports for the results
- Read and write data from relational databases and REST APIs, both packaged and unpackaged
- Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel

▶ Key Features
- Get a firm hold on the fundamentals of R through practical hands-on examples
- Get started with good R programming fundamentals for data science
- Exploit the different libraries of R to build interesting applications in R

▶ Who This Book Is For
This book is for those who wish to develop software in R. You don't need to be an expert or professional programmer to follow this book, but you do need to be interested in learning how R works. My hope is that this book is useful for people ranging from beginners to advanced by providing hands-on examples that may help you understand R in ways you previously did not.

▶ What this book covers
- Chapter 1, Introduction to R, covers the R basics you need to understand the rest of the examples. It is not meant to be a thorough introduction to R. Rather, it's meant to give you the very basic concepts and techniques you need to quickly get started with the three examples contained in the book, and which I introduce next.

(This book uses three examples to showcase R's wide range of functionality. The first example shows how to analyze votes with descriptive statistics and linear models, and it is presented in Chapter 2, Understanding Votes with Descriptive Statistics and Chapter 3, Predicting Votes with Linear Models.)

- Chapter 2, Understanding Votes with Descriptive Statistics, shows how to programatically create hundreds of graphs to identify relations within data visually. It shows how to create histograms, scatter plots, correlation matrices, and how to perform Principal Component Analysis (PCA).
- Chapter 3, Predicting Votes with Linear Models, shows how to programatically find the best predictive linear model for a set of data, and according to different success metrics. It also shows how to check model assumptions, and how to use cross validation to increase confidence in your results.

(The second example shows how to simulate data, visualize it, analyze its text components, and create automatic presentations with it.)

Chapter 4, Simulating Sales Data and Working with Databases, shows how to design data schema and simulate the various types of data. It also shows how to integrate real text data with simulated data, and how to use a SQL database to access it more efficiently.
- Chapter 5, Communicating Sales with Visualization, shows how to produce basic to advanced graphs, highly customized graphs. It also shows how to create dynamic 3D graphs and interactive maps.
- Chapter 6, Understanding Reviews with Text Analysis, shows how to perform text analysis step by step using Natural Language Processing (NLP) techniques, as well as sentiment analysis.
- Chapter 7, Developing Automatic Presentations, shows how to put together the results of previous chapters to create presentations that can be automatically updated with the latest data using tools such as knitr and R Markdown.

(Finally, the third example shows how to design and develop complex object-oriented systems that retrieve real-time data from cryptocurrency markets, as well as how to optimize implementations and how to build web applications around such systems.)

- Chapter 8, Object-Oriented System to Track Cryptocurrencies, introduces basic object-oriented techniques that produce complex systems when combined. Furthermore, it shows how to work with three of R’s most used object models, which are S3, S4, and R6, as well as how to make them work together.
- Chapter 9, Implementing an Efficient Simple Moving Average, shows how to iteratively improve an implementation for a Simple Moving Average (SMA), starting with what is considered to be bad code, all the way to advanced optimization techniques using parallelization, and delegation to the Fortran and C++ languages.
- Chapter 10, Adding Interactivity with Dashboards, shows how to wrap what was built during the previous two chapters to produce a modern web application using reactive programming through the Shiny package.
- Appendix, Required Packages, shows how to install the internal and external software necessary to replicate the examples in the book. Specifically, it will walk through the installation processes for Linux and macOS, but Windows follows similar principles and should not cause any problems.

작가 소개

- Omar Trejo Navarro
Omar Trejo Navarro is a data consultant. He co-founded Datata, is actively working on CVEST, and maintains a personal website (OTRENAV). He is an applied mathematics and economics double major from ITAM in Mexico City, where he continues to work as a research assistant. He does software development with a focus on data platforms, data science, and web applications. He has worked with clients from all over the world, and is a keen supporter of open source, open data, and open science in general.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 객체지향 시스템 디자인 원칙 (마우리시오 아니체, 오현석)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 랭체인과 랭그래프로 구현하는 RAG・AI 에이전트 실전 입문 (니시미 마사히로, 요시다 신고)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 오브젝트 (조영호)
  • 밑바닥부터 시작하는 딥러닝 3 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전