본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Principles of Data Science 상세페이지

[체험판] Principles of Data Science

Learn the techniques and math you need to start making sense of your data

  • 관심 0
소장
판매가
무료
출간 정보
  • 2016.12.16 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 39 쪽
  • 3.8MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781785888922
ECN
-

이 작품의 시리즈더보기

  • [체험판] Principles of Data Science (Sinan Ozdemir)
  • Principles of Data Science (Sinan Ozdemir)
[체험판] Principles of Data Science

작품 정보

▶Book Description
Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking and answering complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas.

With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means

▶What You Will Learn
- Get to know the five most important steps of data science
- Use your data intelligently and learn how to handle it with care
- Bridge the gap between mathematics and programming
- Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results
- Build and evaluate baseline machine learning models
- Explore the most effective metrics to determine the success of your machine learning models
- Create data visualizations that communicate actionable insights
- Read and apply machine learning concepts to your problems and make actual predictions

▶Key Features
- Enhance your knowledge of coding with data science theory for practical insight into data science and analysis
- More than just a math class, learn how to perform real-world data science tasks with R and Python
- Create actionable insights and transform raw data into tangible value

▶Who This Book Is For
This book is for people who are looking to understand and utilize the basic practices of data science for any domain.

The reader should be fairly well acquainted with basic mathematics (algebra, perhaps probabilities) and should feel comfortable reading snippets of R/Python as well as pseudocode. The reader is not expected to have worked in a data field; however, they should have the urge to learn and apply the techniques put forth in this book to either their own datasets or those provided to them.

▶What this book covers
- Chapter 1, How to Sound Like a Data Scientist, gives an introduction to the basic terminology used by data scientists and a look at the types of problem we will be solving throughout this book.
- Chapter 2, Types of Data, looks at the different levels and types of data out there and how to manipulate each type. This chapter will begin to deal with the mathematics needed for data science.
- Chapter 3, The Five Steps of Data Science, uncovers the five basic steps of performing data science, including data manipulation and cleaning, and sees examples of each step in detail.
- Chapter 4, Basic Mathematics, helps us discover the basic mathematical principles that guide the actions of data scientists by seeing and solving examples in calculus, linear algebra, and more.
- Chapter 5, Impossible or Improbable –- a Gentle Introduction to Probability, is a beginner's look into probability theory and how it is used to gain an understanding of our random universe.
- Chapter 6, Advanced Probability, uses principles from the previous chapter and introduces and applies theorems, such as the Bayes Theorem, in the hope of uncovering the hidden meaning in our world.
- Chapter 7, Basic Statistics, deals with the types of problem that statistical inference attempts to explain, using the basics of experimentation, normalization, and random sampling.
- Chapter 8, Advanced Statistics, uses hypothesis testing and confidence interval in order to gain insight from our experiments. Being able to pick which test is appropriate and how to interpret p-values and other results is very important as well.
- Chapter 9, Communicating Data, explains how correlation and causation affect our interpretation of data. We will also be using visualizations in order to share our results with the world.
- Chapter 10, How to Tell If Your Toaster Is Learning –- Machine Learning Essentials, focuses on the definition of machine learning and looks at real-life examples of how and when machine learning is applied. A basic understanding of the relevance of model evaluation is introduced.
- Chapter 11, Predictions Don't Grow on Trees, or Do They?, looks at more complicated machine learning models, such as decision trees and Bayesian-based predictions, in order to solve more complex data-related tasks.
- Chapter 12, Beyond the Essentials, introduces some of the mysterious forces guiding data sciences, including bias and variance. Neural networks are introduced as a modern deep learning technique.
- Chapter 13, Case Studies, uses an array of case studies in order to solidify the ideas of data science. We will be following the entire data science workflow from start to finish multiple times for different examples, including stock price prediction and handwriting detection.

작가 소개

- Sinan Ozdemir
Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own start-up, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams.

After completing the Fellowship at the Y Combinator accelerator, Sinan has spent most of his days working on his fast-growing company, while creating educational material for data science.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 우아한 AI 개발 (우아한형제들)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 멀티패러다임 프로그래밍 (유인동)
  • 기획자로 산다는 것 (카카)
  • npm Deep Dive (전유정, 김용찬)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 혼자 공부하는 네트워크 (강민철)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 개정4판 | 모두의 딥러닝 (조태호)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전