본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Cloud Analytics with Google Cloud Platform 상세페이지

Cloud Analytics with Google Cloud Platform

An end-to-end guide to processing and analyzing big data using Google Cloud Platform

  • 관심 0
소장
전자책 정가
12,000원
판매가
12,000원
출간 정보
  • 2018.04.10 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 273 쪽
  • 6.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788838597
ECN
-

이 작품의 시리즈더보기

  • [체험판] Cloud Analytics with Google Cloud Platform (Sanket Thodge)
  • Cloud Analytics with Google Cloud Platform (Sanket Thodge)
Cloud Analytics with Google Cloud Platform

작품 정보

▶Book Description
With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data.

This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you're planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning.

By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation

▶What You Will Learn
- Explore the basics of cloud analytics and the major cloud solutions
- Learn how organizations are using cloud analytics to improve the ROI
- Explore the design considerations while adopting cloud services
- Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub
- Process your data with tools such as Cloud Dataproc, BigQuery, etc
- Over 70 GCP tools to build an analytics engine for cloud analytics
- Implement machine learning and other AI techniques on GCP

▶Key Features
- Master the concept of analytics on the cloud: and how organizations are using it
- Learn the design considerations and while applying a cloud analytics solution
- Design an end-to-end analytics pipeline on the cloud

▶Who This Book Is For
This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.

Book focuses on major aspects of each tool - utility, architecture, use cases, pricing, and right fit. But for you to get the complete understanding of each tool we have provided links to YouTube videos which will help you with the practical aspects of the services in GCP.

▶What this book covers
- Chapter 1, Introducing Cloud Analytics, discusses the traditional way that companies prefer to build their on-premise architecture for analytics. This will majorly discuss the enterprises' approach towards the analytics engine how they handle/process/report data. It will also give an introduction to analytics and data science concepts. And the top cloud vendors who provides it. This chapter will also give a brief overview of cloud computing.

- Chapter 2, Design and Business Considerations, talks more about the design and architecture of the cloud. Before moving to the cloud, do we need to consider on-premise hardware or should we consider moving it straight away? What are the prerequisites before migrating to the cloud? And the best practices to follow for migration. Topics like these will be covered.

- Chapter 3, GCP 10,000 Feet Above –. A High-Level Understanding of GCP, explains all the analytics tools such as Datastore, BigTable, BigQuery, Cloud SQL, machine learning, IoT, Pub/Sub, and many more in detail. Here we are covering all the services in GCP and appending them with top features, pricing, use cases of all the services.

- Chapter 4, Ingestion and Storing –. Bring the Data and Capture It, dives into the major services involving ingestion and storing. We have multiple options associated with ingestion and storage. We will be discussing about eight major services which can help us with ingestion and storage. We have videos for each of the services.
There will be a few cloud use cases from the industry about the purpose of each tool.

- Chapter 5, Processing and Visualizing –. Close Encounter, Squeeze the Data and Make It Work, discusses the processing tools and machine learning APIs that are available with GCP. GCP has extensive tools for processing data. For processing, we have Cloud Dataproc (Hadoop and Spark). BigQuery, Cloud SQL, and more will be covered. We have videos for each of the services.

- Chapter 6, Machine Learning, Deep Learning, and AI on GCP, talks predominantly about artificial intelligence and machine learning. In the beginning of the chapter, we will understand what artificial intelligence is, and later, we will understand what machine learning is. We have videos for most of the services.

- Chapter 7, Guidance on Google Cloud Platform Certification, focuses mainly on GCP certification with respect to cloud architects and data engineers. Along with that, it will also have some dummy/sample questions from certification.

- Chapter 8, Business Use Cases, includes examples from multiple sectors sectors. They will help the reader get a more precise understanding of the cloud and how they are used. We have three use cases - they talk about the problem statement, different approach towards each problem, solution to each, architecture, and list of services required.

- Chapter 9, Introduction to AWS and Azure, covers the major tools in AWS and Azure about data science and analytics. Most of the tools will be closely related to data science. The aim of this chapter will be relating the GCP tools with AWS and Azure. For example, we have cloud storage in GCP, and similarly we have S3 in AWS and Blob Storage in Azure.

작가 소개

- Sanket Thodge
Sanket Thodge is an entrepreneur by profession based out of Pune, India. Sanket started his journey working in service industry, but soon realized that there are more things to do in life. Therefore, Sanket incorporated startup with the name as Pi R Square Digital Solutions Pvt Ltd. Career being started as a Hadoop Developer, Sanket explored Cloud, Internet of Things, Machine Learning and Blockchain.

Sanket has also applied for a patent in IoT and has worked with numerous startups and multinationals in providing consultancy, architecture building, development, and corporate training across globe.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 타입스크립트, 리액트, Next.js로 배우는 실전 웹 애플리케이션 개발 (테지마 타쿠야, 요시다 타케토)
  • 혼자 공부하는 데이터 분석 with 파이썬 (박해선)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전