본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Automated Machine Learning 상세페이지

Hands-On Automated Machine Learning

A beginner's guide to building automated machine learning systems using AutoML and Python

  • 관심 0
소장
전자책 정가
17,000원
판매가
17,000원
출간 정보
  • 2018.04.26 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 273 쪽
  • 10.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788622288
ECN
-

이 작품의 시리즈더보기

  • [체험판] Hands-On Automated Machine Learning (Sibanjan Das, Umit Mert Cakmak)
  • Hands-On Automated Machine Learning (Sibanjan Das, Umit Mert Cakmak)
Hands-On Automated Machine Learning

작품 정보

▶Book Description
AutoML is designed to automate parts of Machine Learning. Readily available AutoML tools are making data science practitioners' work easy and are received well in the advanced analytics community. Automated Machine Learning covers the necessary foundation needed to create automated machine learning modules and helps you get up to speed with them in the most practical way possible.

In this book, you'll learn how to automate different tasks in the machine learning pipeline such as data preprocessing, feature selection, model training, model optimization, and much more. In addition to this, it demonstrates how you can use the available automation libraries, such as auto-sklearn and MLBox, and create and extend your own custom AutoML components for Machine Learning.

By the end of this book, you will have a clearer understanding of the different aspects of automated Machine Learning, and you'll be able to incorporate automation tasks using practical datasets. You can leverage your learning from this book to implement Machine Learning in your projects and get a step closer to winning various machine learning competitions.

▶What You Will Learn
⦁ Understand the fundamentals of Automated Machine Learning systems
⦁ Explore auto-sklearn and MLBox for AutoML tasks
⦁ Automate your preprocessing methods along with feature transformation
⦁ Enhance feature selection and generation using the Python stack
⦁ Assemble individual components of ML into a complete AutoML framework
⦁ Demystify hyperparameter tuning to optimize your ML models
⦁ Dive into Machine Learning concepts such as neural networks and autoencoders
⦁ Understand the information costs and trade-offs associated with AutoML

▶Key Features
⦁ Build automated modules for different machine learning components Understand each component of a machine learning pipeline in depth Learn to use different open source AutoML and feature engineering platforms

▶Who This Book Is For
If you're a budding data scientist, data analyst, or Machine Learning enthusiast and are new to the concept of automated machine learning, this book is ideal for you. You'll also find this book useful if you're an ML engineer or data professional interested in developing quick machine learning pipelines for your projects. Prior exposure to Python programming will help you get the best out of this book.

▶What this book covers
⦁ Chapter 1, Introduction to AutoML, creates a foundation for you to dive into AutoML. We also introduce you to various AutoML libraries.
⦁ Chapter 2, Introduction to Machine Learning Using Python, introduces some machine learning concepts so that you can follow the AutoML approaches easily.
⦁ Chapter 3, Data Preprocessing, provides an in-depth understanding of different data preprocessing methods, what can be automated, and how to automate it. Feature tools and auto-sklearn preprocessing methods will be introduced here.
⦁ Chapter 4, Automated Algorithm Selection, provides guidance on which algorithm works best on which kind of dataset. We learn about the computational complexity and scalability of different algorithms, along with methods to decide the algorithm to use based on training and scoring time. We demonstrate auto-sklearn and how to extend it to include new algorithms.
⦁ Chapter 5, Hyperparameter Optimization, provides you with the required fundamentals on automating hyperparameter tuning a for variety of variables.
⦁ Chapter 6, Creating AutoML Pipelines, explains stitching together various components to create an end-to-end AutoML pipeline.
⦁ Chapter 7, Dive into Deep Learning, introduces you to various deep learning concepts and how they contribute to AutoML.
⦁ Chapter 8, Critical Aspects of ML and Data Science Projects, concludes the discussion and provides information on various trade-offs on the complexity and cost of AutoML projects.

작가 소개

⦁ Sibanjan Das
Sibanjan Das is a Business Analytics and Data Science consultant. He has extensive experience in IT industry working on ERP systems, implementing predictive analytics solutions in business systems and Internet of Things. An enthusiastic and passionate professional about technology & innovation, he has the passion for wrangling with data from early days of his career. His writings have appeared in various Analytics Magazines and have previously authored a book "Data Science using Oracle Data Miner and Oracle R Enterprise."

Sibanjan holds a Master of IT degree with a major in Business Analytics from Singapore Management University, Singapore and is a Computer Science Engineering graduate from Institute of Technical Education and Research, India. He is a Six Sigma Green Belt from Institute Of Industrial Engineers and also holds several industry certifications such as OCA, OCP, CSCMS, and ITIL V3.

⦁ Umit Mert Cakmak
Umit Cakmak is a Data Scientist at IBM, extensively focusing on IBM Data Science Experience and IBM Watson Machine Learning to solve complex business problems. His research spans across many areas from statistical modeling of financial asset prices to using evolutionary algorithms to improve the performance of machine learning models. Before joining to IBM, he worked on various domains such as high-frequency trading, supply chain management and consulting. He likes to learn from others and also share his insights at universities, conferences and local meet-ups.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전