본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Machine Learning on Google Cloud Platform 상세페이지

Hands-On Machine Learning on Google Cloud Platform

Implementing smart and efficient analytics using Cloud ML Engine

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2018.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 489 쪽
  • 23.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788398879
ECN
-

이 작품의 시리즈더보기

  • [체험판] Hands-On Machine Learning on Google Cloud Platform (Giuseppe Ciaburr, V Kishore Ayyade)
  • Hands-On Machine Learning on Google Cloud Platform (Giuseppe Ciaburr, V Kishore Ayyade)
Hands-On Machine Learning on Google Cloud Platform

작품 정보

▶Book Description
Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions.

This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications.

By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems

▶What You Will Learn
⦁ Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile
⦁ Create, train and optimize deep learning models for various data science problems on big data
⦁ Learn how to leverage BigQuery to explore big datasets
⦁ Use Google's pre-trained TensorFlow models for NLP, image, video and much more
⦁ Create models and architectures for Time series, Reinforcement Learning, and generative models
⦁ Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications

▶Key Features
⦁ Get well versed in GCP pre-existing services to build your own smart models
⦁ A comprehensive guide covering aspects from data processing, analyzing to building and training ML models
⦁ A practical approach to produce your trained ML models and port them to your mobile for easy access

▶Who This Book Is For
This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

▶What this book covers
⦁ Chapter 1, Introducing the Google Cloud Platform, explores different services that may be useful to build a machine learning pipeline based on GCP.
⦁ Chapter 2, Google Compute Engine, helps you to create and fully manage your VM via both the online console and command-line tools, as well as how to implement a data science workflow and a Jupyter Notebook workspace.
⦁ Chapter 3, Google Cloud Storage, shows how to upload data and manage it using the services provided by the Google Cloud Platform.
⦁ Chapter 4, Querying Your Data with BigQuery, shows you how to query data from Google Storage and visualize it with Google Data Studio.
⦁ Chapter 5, Transforming Your Data, presents Dataprep, a service useful for preprocessing data, extracting features, and cleaning up records. We also look at Dataflow, a service used to implement streaming and batch processing.
⦁ Chapter 6, Essential Machine Learning, starts our journey into machine learning and deep learning; we learn when to apply each one.
⦁ Chapter 7, Google Machine Learning APIs, teaches us how to use Google Cloud machine learning APIs for image analysis, text and speech processing, translation, and video inference.
⦁ Chapter 8, Creating ML Applications with Firebase, shows how to integrate different GCP services to build a seamless machine-learning-based application, mobile or web-based.
⦁ Chapter 9, Neural Networks with TensorFlow and Keras, gives a good understanding of the structure and key elements of a feedforward network, how to architecture one, and how to tinker and experiment with different parameters.
⦁ Chapter 10, Evaluating Results with TensorBoard, shows how the choice of different parameters and functions impacts the performance of the model.
⦁ Chapter 11, Optimizing the Model through Hyperparameter Tuning, teaches us how to use hypertuning in TensorFlow application code and interpret the results to select the best performing model.
⦁ Chapter 12, Preventing Overfitting with Regularization, shows how to identify overfitting and make our models more robust to previously unseen data by setting the right parameters and defining the proper architectures.
⦁ Chapter 13, Beyond Feedforward Networks –. CNN and RNNs, teaches which type of neural network to apply to different problems, and how to define and implement them on GCP.
⦁ Chapter 14, Time Series with LSTMs, shows how to create LSTMs and apply them to time series predictions. We will also understand when LSTMs outperform more standard approaches.
⦁ Chapter 15, Reinforcement Learning, introduces the power of reinforcement learning and shows how to implement a simple use case on GCP.
⦁ Chapter 16, Generative Neural Networks, teaches us how to extract the content generated within the neural net with different types of content—.text, images, and sounds.
⦁ Chapter 17, Chatbots, shows how to train a contextual chatbot while implementing it in a real mobile application.

작가 소개

⦁ Giuseppe Ciaburro
Giuseppe Ciaburro holds a PhD in environmental technical physics and two master's degrees. His research is on machine learning applications in the study of urban sound environments. He works at Built Environment Control Laboratory, Università degli Studi della Campania Luigi Vanvitelli (Italy). He has over 15 years' experience in programming Python, R, and MATLAB, first in the field of combustion, and then in acoustics and noise control. He has several publications to his credit.

⦁ V Kishore Ayyadevara
V Kishore Ayyadevara has over 9 years' experience of using analytics to solve business problems and setting up analytical work streams through his work at American Express, Amazon, and, more recently, a retail analytics consulting startup. He has an MBA from IIM Calcutta and is also an electronics and communications engineer. He has worked in credit risk analytics, supply chain analytics, and consulting for multiple FMCG companies to identify ways to improve their profitability.

⦁ Alexis Perrier
Alexis Perrier is a data science consultant with experience in signal processing and stochastic algorithms. He holds a master's in mathematics from Université Pierre et Marie Curie Paris VI and a PhD in signal processing from Télécom ParisTech. He is actively involved in the DC data science community. He is also an avid book lover and proud owner of a real chalk blackboard, where he regularly shares his fascination of mathematical equations with his kids.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • [리얼타임] 버프스위트 활용과 웹 모의해킹 (김명근, 조승현)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 개발자를 위한 쉬운 쿠버네티스 (윌리엄 데니스, 이준)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 전략적 모놀리스와 마이크로서비스 (반 버논, 토마스 야스쿨라)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전