본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Machine learning with TensorFlow 1.x 상세페이지

[체험판] Machine learning with TensorFlow 1.x

Second generation machine learning with Google's brainchild - TensorFlow 1.x

  • 관심 0
소장
판매가
무료
출간 정보
  • 2017.11.21 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 27 쪽
  • 13.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781786461988
ECN
-

이 작품의 시리즈더보기

  • [체험판] Machine learning with TensorFlow 1.x (Quan Hua, Shams Ul Azeem)
  • Machine learning with TensorFlow 1.x (Quan Hua, Shams Ul Azeem)
[체험판] Machine learning with TensorFlow 1.x

작품 정보

▶Book Description
Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x.

Firstly, you’ll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data flow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You’ll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you’ll implement a complete real-life production system from training to serving a deep learning model. As you advance you’ll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you’ll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim.

By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment.

▶What You Will Learn
⦁ Explore how to use different machine learning models to ask different questions of your data
⦁ Learn how to build deep neural networks using TensorFlow 1.x
⦁ Cover key tasks such as clustering, sentiment analysis, and regression analysis using TensorFlow 1.x
⦁ Find out how to write clean and elegant Python code that will optimize the strength of your algorithms
⦁ Discover how to embed your machine learning model in a web application for increased accessibility
⦁ Learn how to use multiple GPUs for faster training using AWS

▶Key Features
⦁ Enter the new era of second-generation machine learning with Python with this practical and insightful guide
⦁ Set up TensorFlow 1.x for actual industrial use, including high-performance setup aspects such as multi-GPU support
⦁ Create pipelines for training and using applying classifiers using raw real-world data

▶Who This Book Is For
This book is for data scientists and researchers who are looking to either migrate from an existing machine learning library or jump into a machine learning platform headfirst. The book is also for software developers who wish to learn deep learning by example. Particular focus is placed on solving commercial deep learning problems from several industries using TensorFlow’s unique features. No commercial domain knowledge is required, but familiarity with Python and matrix math is expected.

▶Style and approach
This comprehensive guide will enable you to understand the latest advances in machine learning and will empower you to implement this knowledge in your machine learning environment.

▶What this book covers
⦁ Chapter 1, Getting Started with TensorFlow, shows how to install Tensorflow and get started on Ubuntu, macOS, and Windows.
⦁ Chapter 2, Your First Classifier, guides you through your first journey with a handwriting recognizer.
⦁ Chapter 3, The TensorFlow Toolbox, gives you an overview of the tools that Tensorflow provides to work more effectively and easily.
⦁ Chapter 4, Cats and Dogs, teaches you how to build an image classifier using Convolutional Neural Networks in TensorFlow.
⦁ Chapter 5, Sequence to Sequence Models—.Parlez-vous Francais?, discusses how to build an English to French translator using sequence-to-sequence models.
⦁ Chapter 6, Finding Meaning, explores the ways to find the meaning in the text by using sentiment analysis, entity extraction, keyword extraction, and word-relation extraction.
⦁ Chapter 7, Making Money with Machine Learning, dives into an area with copious amounts of data: the financial world. You will learn how to work with the time series data to solve the financial problems.
⦁ Chapter 8, The Doctor Will See You Now, investigates ways to tackle an enterprisegrade problem—.medical diagnosis—.using deep neural networks.
⦁ Chapter 9, Cruise Control - Automation, teaches you how to create a production system, ranging from training to serving a model. The system can also receive user feedbacks and automatically train itself every day.
⦁ Chapter 10, Go Live and Go Big, guides you through the world of Amazon Web Services and shows you how to take advantage of a multiple GPUs system on Amazon servers.
⦁ Chapter 11, Going Further - 21 Problems, introduces 21 real-life problems that you can use in deep learning—.TensorFlow to solve after reading this book.
⦁ Appendix, Advanced Installation, discusses GPUs and focuses on a step-by-step CUDA setup and a GPU-based TensorFlow installation.

작가 소개

⦁ Quan Hua
Quan Hua is a Computer Vision and Machine Learning Engineer at BodiData, a data platform for body measurements, where he focuses on developing computer vision and machine learning applications for a handheld technology capable of acquiring a body avatar while a person is fully clothed. He earned a bachelor of science degree from the University of Science, Vietnam, specializing in Computer Vision. He has been working in the field of computer vision and machine learning for about 3 years at start-ups. Quan has been writing for Packt since 2015 for a Computer Vision book, OpenCV 3 Blueprints.

⦁ Shams Ul Azeem
Shams Ul Azeem is an undergraduate in electrical engineering from NUST Islamabad, Pakistan. He has a great interest in the computer science field, and he started his journey with Android development. Now, he’s pursuing his career in Machine Learning, particularly in deep learning, by doing medical-related freelancing projects with different companies.

He was also a member of the RISE lab, NUST, and he has a publication credit at the IEEE International Conference, ROBIO as a co-author of Designing of motions for humanoid goalkeeper robots.

⦁ Saif Ahmed
Saif Ahmed is an accomplished quantitative analyst and data scientist with 15 years of industry experience. His career started in management consulting at Accenture and lead him to quantitative and senior management roles at Goldman Sachs and AIG Investments.

Most recently, he co-founded and runs a start-up focused on applying Deep Learning to automating medical imaging. He obtained his bachelor's degree in computer science from Cornell University and is currently pursuing a graduate degree in data science at U.C. Berkeley.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! -모델링편- (나츠모리 카츠, 김모세)
  • 소문난 명강의 : 크리핵티브의 한 권으로 끝내는 웹 해킹 바이블 (하동민)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 플러터 엔지니어링 (마지드 하지안, 한국 플러터 커뮤니티)
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! 카툰 렌더링편 (나츠모리 카츠, 김모세)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • MCP로 똑똑하게 일하는 법 (케이트리)
  • AI 에이전트 생태계 (이주환)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 혼자 공부하는 네트워크 (강민철)
  • Do it! 커서로 시작하는 AI 코딩 입문 (고경희)
  • Do it! C++ 완전 정복 (문종채, 조규남)
  • 비전공자를 위한 이해할 수 있는 IT 지식 (최원영)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전