본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Mastering Geospatial Analysis with Python 상세페이지

[체험판] Mastering Geospatial Analysis with Python

Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 31 쪽
  • 34.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788293815
ECN
-

이 작품의 시리즈더보기

  • [체험판] Mastering Geospatial Analysis with Python (Paul Crickard, Eric van Rees)
  • Mastering Geospatial Analysis with Python (Paul Crickard, Eric van Rees)
[체험판] Mastering Geospatial Analysis with Python

작품 정보

▶Book Description
Python comes with a host of open source libraries and tools that help you work on professional geoprocessing tasks without investing in expensive tools. This book will introduce Python developers, both new and experienced, to a variety of new code libraries that have been developed to perform geospatial analysis, statistical analysis, and data management. This book will use examples and code snippets that will help explain how Python 3 differs from Python 2, and how these new code libraries can be used to solve age-old problems in geospatial analysis.

You will begin by understanding what geoprocessing is and explore the tools and libraries that Python 3 offers. You will then learn to use Python code libraries to read and write geospatial data. You will then learn to perform geospatial queries within databases and learn PyQGIS to automate analysis within the QGIS mapping suite. Moving forward, you will explore the newly released ArcGIS API for Python and ArcGIS Online to perform geospatial analysis and create ArcGIS Online web maps. Further, you will deep dive into Python Geospatial web frameworks and learn to create a geospatial REST API.

▶What You Will Learn
⦁ Manage code libraries and abstract geospatial analysis techniques using Python 3.
⦁ Explore popular code libraries that perform specific tasks for geospatial analysis.
⦁Utilize code libraries for data conversion, data management, web maps, and REST API creation.
⦁Learn techniques related to processing geospatial data in the cloud.
⦁Leverage features of Python 3 with geospatial databases such as PostGIS, SQL Server, and SpatiaLite.

▶Key Features
⦁ Analyze and process geospatial data using Python libraries such as; Anaconda, GeoPandas
⦁ Leverage new ArcGIS API to process geospatial data for the cloud.
⦁ Explore various Python geospatial web and machine learning frameworks.

▶Who This Book Is For
The audience for this book includes students, developers, and geospatial professionals who need a reference book that covers GIS data management, analysis, and automation techniques with code libraries built in Python 3.

▶What this book covers
⦁ Chapter 1, Package Installation and Management, explains how to install and manage the code libraries used in the book.
⦁ Chapter 2, Introduction to Geospatial Code Libraries, covers the major code libraries used to process and analyze geospatial data.
⦁ Chapter 3, Introduction to Geospatial Databases, introduces the geospatial databases used for data storage and analysis.
⦁ Chapter 4, Data Types, Storage, and Conversion, focuses on the many different data types (both vector and raster) that exist within GIS.
⦁ Chapter 5, Vector Data Analysis, covers Python libraries such as Shapely, OGR, and GeoPandas. which are used for analyzing and processing vector data.
⦁ Chapter 6, Raster Data Processing, explores using GDAL and Rasterio to process raster datasets in order to perform geospatial analysis.
⦁ Chapter 7, Geoprocessing with Geodatabases, shows the readers how to use Spatial SQL to perform geoprocessing with database tables containing a spatial column.
⦁ Chapter 8, Automating QGIS Analysis, teaches the readers how to use PyQGIS to automate analysis within the QGIS mapping suite.
⦁ Chapter 9, ArcGIS API for Python and ArcGIS Online, introduces the ArcGIS API for Python, which enables users to interact with Esri's cloud platform, ArcGIS Online, using Python 3.
⦁ Chapter 10, Geoprocessing with a GPU Database, covers using Python tools to interact with cloud-based data to search and process data.
⦁ Chapter 11, Flask and GeoAlchemy2, describes how to use the Flask Python web framework and the GeoAlchemy ORM to perform spatial data queries.
⦁ Chapter 12, GeoDjango, covers using the Django Python web framework and the GeoDjango ORM to perform spatial data queries.
⦁ Chapter 13, Geospatial REST API, teaches the readers how to create a REST API for geospatial data.
⦁ Chapter 14, Cloud Geodatabase Analysis and Visualization, introduces the readers to the CARTOframes Python package, enabling the integration of Carto maps, analysis, and data services into data science workflows.
⦁ Chapter 15, Automating Cloud Cartography, covers a new location data visualization library for Jupyter Notebooks.
⦁ Chapter 16, Python Geoprocessing with Hadoop, explains how to perform geospatial analysis using distributed servers.

작가 소개

⦁Paul Crickard
Paul Crickard III has been programming for over 15 years and has focused on GIS and geospatial programming for 7 years. He spent 3 years working as a planner at an architecture firm, where he combined GIS with Building Information Modeling (BIM) and CAD, and built web-based GIS applications to display and modify architectural data. He has given presentations to the New Mexico Public School Facilities Authority on BIM and GIS integration and on the use of GIS for Facility Planning, and the BIM505 Users Group on GIS as an interactive frontend to BIM and editing BIM data via web applications. Currently, Paul works as a programmer analyst in Albuquerque, specializing in the design, maintenance, and the implementation of geospatial applications. He has written plugins and extensions for ArcMap and ArcGIS Explorer Desktop to utilize NoSQL databases and send data using the Advanced Message Queuing Protocol (AMQP). Paul has built applications using OpenLayers and Leaflet.js and is currently utilizing the ESRI JavaScript API in production. Paul tries to incorporate Python in geospatial development wherever possible. From building plugins, toolboxes, and the Field Calculator functions in ArcMap to coding standalone desktop and web applications, pyshp is his favorite library for geospatial Python applications. When he is not coding, Paul enjoys relaxing with his wife and son, cooking, and brewing beer.

⦁Eric van Rees
Eric van Rees was first introduced to Geographical Information Systems (GIS) when studying Human Geography in the Netherlands. For 9 years, he was the editor-in-chief of GeoInformatics, an international GIS, surveying, and mapping publication and a contributing editor of GIS Magazine. During that tenure, he visited many geospatial user conferences, trade fairs, and industry meetings. He focuses on producing technical content, such as software tutorials, tech blogs, and innovative new use cases in the mapping industry.

⦁Silas Toms
Silas Toms is a certified GIS Professional and the author of the first edition of ArcPy and ArcGIS. President and founder of Loki Intelligent Corporation, a location information firm located in San Francisco, California, he is an expert in real-time geographic information systems and analysis automation. Along with Dara O'Beirne and Arini Geographics, he developed the real-time common operational picture used at Super Bowl 50 and all other events at Levi's Stadium in Santa Clara, California. This dynamic system was recognized by the White House and ESRI President, Jack Dangermond, as a unique and powerful application of GIS, allowing the federal, state, and local government to coordinate and communicate in real time, for the first time ever.

As the President of Loki Intelligent, Silas is focused on unique applications of GIS that will power the future of location information. The sheer amount of data collected through sensors and mobile reporting demands automation and data processing improvements to turn the raw input into location intelligence. He believes that correct application of geospatial analysis, web mapping, and mobile data collection will improve the decision-making processes within the government and business. Loki is location information, and information is power

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 잘되는 머신러닝 팀엔 이유가 있다 (데이비드 탄, 에이다 양)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 스테이블 디퓨전 실전 가이드 (시라이 아키히코, AICU 미디어 편집부)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 실리콘밸리에서 통하는 파이썬 인터뷰 가이드 (런젠펑, 취안수쉐)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 혼자 공부하는 네트워크 (강민철)
  • 입문자를 위한 맞춤형 AI 프로그램 만들기 (다비드스튜디오)
  • Do it! JSCODE의 AWS 입문 (박재성)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전