본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Mastering TensorFlow 1.x 상세페이지

[체험판] Mastering TensorFlow 1.x

Advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.01.22 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 39 쪽
  • 12.2MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788297004
ECN
-

이 작품의 시리즈더보기

  • [체험판] Mastering TensorFlow 1.x (Armando Fandango)
  • Mastering TensorFlow 1.x (Armando Fandango)
[체험판] Mastering TensorFlow 1.x

작품 정보

▶Book Description
TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs.

This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images.

You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected.

The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.

▶What You Will Learn
⦁ Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras
⦁ Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks
⦁ Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow
⦁ Scale and deploy production models with distributed and high-performance computing on GPU and clusters
⦁ Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R
⦁ Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices
⦁ Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters

▶Key Features
⦁ Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras
⦁ Build, deploy, and scale end-to-end deep neural network models in a production environment
⦁ Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes

▶Who This Book Is For
This book is for anyone who wants to build or upgrade their skills in applying TensorFlow to deep learning problems. Those who are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of deep learning will find this book useful. A basic understanding of TensorFlow and Python is required to get the most out of the book.

▶What this book covers
⦁ Chapter 1, TensorFlow 101, recaps the basics of TensorFlow, such as how to create tensors, constants, variables, placeholders, and operations. We learn about computation graphs and how to place computation graph nodes on various devices such as GPU. We also learn how to use TensorBoard to visualize various intermediate and final output values.
⦁ Chapter 2, High-Level Libraries for TensorFLow, covers several high-level libraries such as TF Contrib Learn, TF Slim, TFLearn, Sonnet, and Pretty Tensor.
⦁ Chapter 3, Keras 101, gives a detailed overview of the high-level library Keras, which is now part of the TensorFlow core.
⦁ Chapter 4, Classical Machine Learning with TensorFlow, teaches us to use TensorFlow to implement classical machine learning algorithms, such as linear regression and classification with logistic regression.
⦁ Chapter 5, Neural Networks and MLP with TensorFlow and Keras, introduces the concept of neural networks and shows how to build simple neural network models. We also cover how to build deep neural network models known as MultiLayer Perceptrons.
⦁ Chapter 6, RNNs with TensorFlow and Keras, covers how to build Recurrent Neural Networks with TensorFlow and Keras. We cover the internal architecture of RNN, Long Short-Term Networks (LSTM), and Gated Recurrent Units (GRU). We provide a brief overview of the API functions and classes provided by TensorFlow and Keras to implement RNN models.
⦁ Chapter 7, RNN for Time Series Data with TensorFlow and Keras, shows how to build and train RNN models for time series data and provide examples in TensorFlow and Keras libraries.
⦁ Chapter 8, RNN for Text Data with TensorFlow and Keras, teaches us how to build and train RNN models for text data and provides examples in TensorFlow and Keras libraries. We learn to build word vectors and embeddings with TensorFlow and Keras, followed by LSTM models for using embeddings to generate text from sample text data.
⦁ Chapter 9, CNN with TensorFlow and Keras, covers CNN models for image data and provides examples in TensorFlow and Keras libraries. We implement the LeNet architecture pattern for our example.
⦁ Chapter 10, Autoencoder with TensorFlow and Keras, illustrates the Autoencoder models for image data and again provides examples in TensorFlow and Keras libraries. We show the implementation of Simple Autoencoder, Denoising Autoencoder, and Variational Autoencoders.
⦁ Chapter 11, TensorFlow Models in Production with TF Serving, teaches us to deploy the models with TensorFlow Serving. We learn how to deploy using TF Serving in Docker containers and Kubernetes clusters.
⦁ Chapter 12, Transfer Learning and Pre-Trained Models, shows the use of pretrained models for predictions. We learn how to retrain the models on a different dataset. We provide examples to apply the VGG16 and Inception V3 models, pretrained on the ImageNet dataset, to predict images in the COCO dataset. We also show examples of retraining only the last layer of the models with the COCO dataset to improve the predictions.
⦁ Chapter 13, Deep Reinforcement Learning, covers reinforcement learning and the OpenAI gym. We build and train several models using various reinforcement learning strategies, including deep Q networks.
⦁ Chapter 14, Generative Adversarial Networks, shows how to build and train generative adversarial models in TensorFLow and Keras. We provide examples of SimpleGAN and DCGAN.
⦁ Chapter 15, Distributed Models with TensorFlow Clusters, covers distributed training for TensorFLow models using TensorFLow clusters. We provide examples of asynchronous and synchronous update methods for training models in data-parallel fashion.
⦁ Chapter 16, TensorFlow Models on Mobile and Embedded Platforms, shows how to deploy TensorFlow models on mobile devices running on iOS and Android platforms. We cover both TF Mobile and TF Lite APIs of the TensorFlow Library.
⦁ Chapter 17, TensorFlow and Keras in R, covers how to build and train TensorFlow models in R statistical software. We learn about the three packages provided by R Studio that implement the TF Core, TF Estimators, and Keras API in R.
⦁ Chapter 18, Debugging TensorFlow Models, tells us strategies and techniques to find problem hotspots when the models do not work as expected. We cover TensorFlow debugger, along with other methods.
⦁ Appendix, Tensor Processing Units, gives a brief overview of Tensor Processing Units. TPUs are futuristic platforms optimized to train and run TensorFlow models. Although not widely available yet, they are available on the Google Cloud Platform and slated to be available soon outside the GCP.

작가 소개

⦁ Armando Fandango
Armando Fandango is an accomplished technologist with hands-on capabilities and senior executive level experience with startups and large companies globally. Armando is spearheading Epic Engineering and Consulting Group as Chief Data Scientist. His work spans across diverse industries including FinTech, Banking, BioInformatics, Genomics, AdTech, Utilities and Infrastructure, Traffic and Transportation, Energy, Human Resource, and Entertainment.

Armando has worked for more than ten years in projects involving Predictive Analytics, Data Science, Machine Learning, Big Data, Product Engineering and High-Performance Computing. His research interests span across machine learning, deep learning, algorithmic game theory and scientific computing. Armando has authored book titled "Python Data Analysis - Second Edition" and published research in international journals and conferences.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • AI 에이전트 생태계 (이주환)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 개정판 | 전문가를 위한 C++ (5판) (마크 그레고리, 남기혁)
  • 코딩 자율학습 리액트 프런트엔드 개발 입문 (김기수)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 개정판 | Do it! HTML+CSS+자바스크립트 웹 표준의 정석 (고경희)
  • 개발자가 영어도 잘해야 하나요? (최희철)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전