본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

[체험판] Practical Big Data Analytics 상세페이지

[체험판] Practical Big Data Analytics

Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R

  • 관심 0
소장
판매가
무료
출간 정보
  • 2018.01.15 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 56.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781783554409
ECN
-

이 작품의 시리즈더보기

  • [체험판] Practical Big Data Analytics (Nataraj Dasgupta)
  • Practical Big Data Analytics (Nataraj Dasgupta)
[체험판] Practical Big Data Analytics

작품 정보

▶Book Description
Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that.

With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks.

By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book.

▶What You Will Learn
⦁ Get a 360-degree view into the world of Big Data, data science and machine learning
⦁ Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives
⦁ Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R
⦁ Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions
⦁ Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications
⦁ Understand corporate strategies for successful Big Data and data science projects
⦁ Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies

▶Key Features
⦁ A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions
⦁ Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses
⦁ Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data

▶Who This Book Is For
The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.

▶What this book covers
⦁ Chapter 1, A Gentle Primer on Big Data, covers the basic concepts of big data and machine learning and the tools used, and gives a general understanding of what big data analytics pertains to.

⦁ Chapter 2, Getting started with Big Data Mining, introduces concepts of big data mining in an enterprise and provides an introduction to the software and hardware architecture stack for enterprise big data.

Chapter 3, The Analytics Toolkit, discusses the various tools used for big data and machine Learning and provides step-by-step instructions on where users can download and install tools such as R, Python, and Hadoop.

⦁ Chapter 4, Big Data with Hadoop, looks at the fundamental concepts of Hadoop and delves into the detailed technical aspects of the Hadoop ecosystem. Core components of Hadoop such as Hadoop Distributed File System (HDFS), Hadoop Yarn, Hadoop MapReduce and concepts in Hadoop 2 such as ResourceManager, NodeManger, Application Master have been explained in this chapter. A step-by-step tutorial on using Hive via the Cloudera Distribution of Hadoop (CDH) has also been included in the chapter.

⦁ Chapter 5, Big Data Analytics with NoSQL, looks at the various emerging and unique database solutions popularly known as NoSQL, which has upended the traditional model of relational databases. We will discuss the core concepts and technical aspects of NoSQL. The various types of NoSQL systems such as In-Memory, Columnar, Document-based, Key-Value, Graph and others have been covered in this section. A tutorial related to MongoDB and the MongoDB Compass interface as well as an extremely comprehensive tutorial on creating a production-grade R Shiny Dashboard with kdb+ have been included.

⦁ Chapter 6, Spark for Big Data Analytics, looks at how to use Spark for big data analytics. Both high-level concepts as well as technical topics have been covered. Key concepts such as SparkContext, Directed Acyclic Graphs, Actions & Transformations have been covered. There is also a complete tutorial on using Spark on Databricks, a platform via which users can leverage Spark

⦁ Chapter 7, A Gentle Introduction to Machine Learning Concepts, speaks about the fundamental concepts in machine learning. Further, core concepts such as supervised vs unsupervised learning, classification, regression, feature engineering, data preprocessing and crossvalidation have been discussed. The chapter ends with a brief tutorial on using an R library for Neural Networks.

⦁ Chapter 8, Machine Learning Deep Dive, delves into some of the more involved aspects of machine learning. Algorithms, bias, variance, regularization, and various other concepts in Machine Learning have been discussed in depth. The chapter also includes explanations of algorithms such as random forest, support vector machines, decision trees. The chapter ends with a comprehensive tutorial on creating a web-based machine learning application.

⦁ Chapter 9, Enterprise Data Science, discusses the technical considerations for deploying enterprise-scale data science and big data solutions. We will also discuss the various ways enterprises across the world are implementing their big data strategies, including cloudbased solutions. A step-by-step tutorial on using AWS - Amazon Web Services has also been provided in the chapter.

⦁ Chapter 10, Closing Thoughts on Big Data, discusses corporate big data and Data Science strategies and concludes with some pointers on how to make big data related projects successful.

⦁ Appendix A, Further Reading on Big Data, contains links for a wider understanding of big data.

작가 소개

⦁ Nataraj Dasgupta
Nataraj Dasgupta is the vice president of Advanced Analytics at RxDataScience Inc. Nataraj has been in the IT industry for more than 19 years and has worked in the technical and analytics divisions of Philip Morris, IBM, UBS Investment Bank and Purdue Pharma. He led the data science division at Purdue Pharma L.P. where he developed the company's award-winning big data and machine learning platform. Prior to Purdue, at UBS, he held the role of associate director working with high frequency and algorithmic trading technologies in the Foreign Exchange trading division of the bank.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 인공지능, 주식분석 좀 부탁해 (곽경일)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 멀티패러다임 프로그래밍 (유인동)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 핸즈온 생성형 AI (오마르 산세비에로, 페드로 쿠엥카)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 실전 ComfyUI (우희철)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전