본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Raspberry Pi 3 Cookbook for Python Programmers 3E 상세페이지

Raspberry Pi 3 Cookbook for Python Programmers 3E

Unleash the potential of Raspberry Pi 3 with over 100 recipes

  • 관심 0
소장
전자책 정가
10,000원
판매가
10,000원
출간 정보
  • 2018.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 542 쪽
  • 68.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788626989
ECN
-

이 작품의 시리즈더보기

  • [체험판] Raspberry Pi 3 Cookbook for Python Programmers 3E (Tim Cox, Dr. Steven Lawre)
  • Raspberry Pi 3 Cookbook for Python Programmers 3E (Tim Cox, Dr. Steven Lawre)
Raspberry Pi 3 Cookbook for Python Programmers 3E

작품 정보

▶Book Description
Raspberry Pi 3 Cookbook for Python Programmers – Third Edition begins by guiding you through setting up Raspberry Pi 3, performing tasks using Python 3.6, and introducing the first steps to interface with electronics. As you work through each chapter, you will build your skills and apply them as you progress. You will learn how to build text classifiers, predict sentiments in words, develop applications using the popular Tkinter library, and create games by controlling graphics on your screen. You will harness the power of a built in graphics processor using Pi3D to generate your own high-quality 3D graphics and environments.

You will understand how to connect Raspberry Pi's hardware pins directly to control electronics, from switching on LEDs and responding to push buttons to driving motors and servos. Get to grips with monitoring sensors to gather real-life data, using it to control other devices, and viewing the results over the internet. You will apply what you have learned by creating your own Pi-Rover or Pi-Hexipod robots. You will also learn about sentiment analysis, face recognition techniques, and building neural network modules for optical character recognition.

Finally, you will learn to build movie recommendations system on Raspberry Pi 3.

▶What You Will Learn
⦁ Learn to set up and run Raspberry Pi 3
⦁ Build text classifiers and perform automation using Python
⦁ Predict sentiments in words and create games and graphics
⦁ Detect edges and contours in images
⦁ Build human face detection and recognition system
⦁ Use Python to drive hardware
⦁ Sense and display real-world data
⦁ Build a neural network module for optical character recognition
⦁ Build movie recommendations system

▶Key Features
⦁ Leverage the power of Raspberry Pi 3 using Python programming
⦁ Create 3D games, build neural network modules, and interface with your own circuits
⦁ Packed with clear, step-by-step recipes to walk you through the capabilities of Raspberry Pi

▶Who This Book Is For
This book is for anyone who wants to master the skills of Python programming using Raspberry Pi 3. Prior knowledge of Python will be an added advantage.

▶What this book covers
⦁ Chapter 1, Getting Started with a Raspberry Pi Computer, introduces the Raspberry Pi and explores the various ways in which it can be set up and used.

⦁ Chapter 2, Dividing Text Data and Building a Text Classifier, guides us to build a text classifier; it can classify text using the bag-of-words model.

⦁ Chapter 3, Using Python for Automation and Productivity, explains how to use graphical user interfaces to create your own applications and utilities.

⦁ Chapter 4, Predicting Sentiments in Words, explains how Naive Bayes classifiers and logistic regression classifiers are constructed to analyze the sentiment in words.

⦁ Chapter 5, Creating Games and Graphics, explains how to create a drawing application and graphical games using the Tkinter canvas.

⦁ Chapter 6, Detecting Edges and Contours in Images, describes in detail how images are loaded, displayed, and saved. It provides detailed implementations of erosion and dilation, image segmentation, histogram equalization, edge detection, detecting corners in images, and more.

⦁ Chapter 7, Creating 3D Graphics, discusses how we can use the hidden power of the Raspberry Pi's graphical processing unit to learn about 3D graphics and landscapes, and produce our very own 3D maze for exploration.

⦁ Chapter 8, Building Face Detector and Face Recognition Applications, explains how human faces can be detected from webcams and recognized using images stored in a database.

⦁ Chapter 9, Using Python to Drive Hardware, establishes the fact that to experience the Raspberry Pi at its best, we really have to use it with our own electronics. This chapter discusses how to create circuits with LEDs and switches, and how to use them to indicate the status of a system and provide control. Finally, it shows us how to create our own game controller, light display, and a persistence-of-vision text display.

⦁ Chapter 10, Sensing and Displaying Real-World Data, explains how to use an analog-todigital converter to provide sensor readings to the Raspberry Pi. We discover how to store and graph the data in real time, as well as display it on an LCD text display. Next, we record the data in a SQL database and display it in our own web server. Finally, we transfer the data to the internet, which will allow us to view and share the captured data anywhere in the world.

⦁ Chapter 11, Building a Neural Network Module for Optical Character Recognition, introduces neural network implementation on Raspberry Pi 3. Optical characters are detected, displayed, and recognized using neural networks.

⦁ Chapter 12, Building Robots, takes you through building two different types of robot (a Rover-Pi and a Pi-Bug), plus driving a servo-based robot arm. We look at motor and servo control methods, using sensors, and adding a compass sensor for navigation.

⦁ Chapter 13, Interfacing with Technology, teaches us how to use the Raspberry Pi to trigger remote mains sockets, with which we can control household appliances. We learn how to communicate with the Raspberry Pi over a serial interface and use a smartphone to control everything using Bluetooth. Finally, we look at creating our own applications to control USB devices.

⦁ Chapter 14, Can I Recommend a Movie for You?, explains how movie recommender systems are built. It elaborates how Euclidean distance and Pearson correlation scores are computed. It also explains how similar users are found in the dataset and the movie recommender module is built.

⦁ Appendix, Hardware and Software List, explains the detailed hardware software list used inside the book.

작가 소개

⦁ Tim Cox
Tim Cox lives in England with his wife and two young daughters and works as a software engineer. His passion for programming stems from a Sinclair Spectrum that sparked his interest in computers and electronics. At university, he earned a BEng in Electronics and Electrical Engineering, and into a career in developing embedded software for a range of industries.

Supporting the vision behind the Raspberry Pi, to encourage a new generation of engineers, Tim co-founded the MagPi magazine (the official magazine for the Raspberry Pi) and produces electronic kits through his site PiHardware.

⦁ Dr. Steven Lawrence Fernandes
Dr. Steven Lawrence Fernandes has Postdoctoral Research experience working in the area of Deep Learning at The University of Alabama at Birmingham, USA. He has received the prestigious US award from Society for Design and Process Science for his outstanding service contributions in 2017 and Young Scientist Award by Vision Group on Science and Technology in 2014. He has also received Research Grant from The Institution of Engineers.

He has completed his B.E (Electronics and Communication Engineering) and M.Tech (Microelectronics) and Ph.D. (Computer Vision and Machine Learning). His Ph.D work Match Composite Sketch with Drone Images has received patent notification (Patent Application Number: 2983/CHE/2015).

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 코딩 자율학습 나도코딩의 파이썬 입문 (나도코딩)
  • 모던 리액트 Deep Dive (김용찬)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 혼자 공부하는 네트워크 (강민철)
  • 개발자를 넘어 기술 리더로 가는 길 (타냐 라일리, 김그레이스)
  • 도메인 주도 설계 (에릭 에반스, 이대엽)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전