본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Machine Learning with JavaScript 상세페이지

Hands-On Machine Learning with JavaScript

Solve complex computational web problems using machine learning

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2018.05.29 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 343 쪽
  • 9.3MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788990301
UCI
-
Hands-On Machine Learning with JavaScript

작품 정보

▶Book Description
In over 20 years of existence, JavaScript has been pushing beyond the boundaries of web evolution with proven existence on servers, embedded devices, Smart TVs, IoT, Smart Cars, and more. Today, with the added advantage of machine learning research and support for JS libraries, JavaScript makes your browsers smarter than ever with the ability to learn patterns and reproduce them to become a part of innovative products and applications.

Hands-on Machine Learning with JavaScript presents various avenues of machine learning in a practical and objective way, and helps implement them using the JavaScript language. Predicting behaviors, analyzing feelings, grouping data, and building neural models are some of the skills you will build from this book. You will learn how to train your machine learning models and work with different kinds of data. During this journey, you will come across use cases such as face detection, spam filtering, recommendation systems, character recognition, and more. Moreover, you will learn how to work with deep neural networks and guide your applications to gain insights from data.

By the end of this book, you'll have gained hands-on knowledge on evaluating and implementing the right model, along with choosing from different JS libraries, such as NaturalNode, brain, harthur, classifier, and many more to design smarter applications.

▶What You Will Learn
⦁ Get an overview of state-of-the-art machine learning
⦁ Understand the pre-processing of data handling, cleaning, and preparation
⦁ Learn Mining and Pattern Extraction with JavaScript
⦁ Build your own model for classification, clustering, and prediction
⦁ Identify the most appropriate model for each type of problem
⦁ Apply machine learning techniques to real-world applications
⦁ Learn how JavaScript can be a powerful language for machine learning

▶Key Features
⦁ Solve complex computational problems in browser with JavaScript
⦁ Teach your browser how to learn from rules using the power of machine learning
⦁ Understand discoveries on web interface and API in machine learning

▶What this book covers
⦁ Chapter 1, Exploring the Potential of JavaScript, takes a look at the JavaScript programming language, its history, ecosystem, and applicability to ML problems.

⦁ Chapter 2, Data Exploration, discusses the data that underlies and powers every ML algorithm, and the various things you can do to preprocess and prepare your data for an ML application.

⦁ Chapter 3, A Tour of Machine Learning Algorithms, takes you on a brief tour of the ML landscape, partitioning it into categories and families of algorithms, much as the gridlines on a map help you navigate unfamiliar terrain.

⦁ Chapter 4, Grouping with Clustering Algorithms, implements our first ML algorithms, with a focus on clustering algorithms that automatically discover and identify patterns within data in order to group similar items together.

⦁ Chapter 5, Classification Algorithms, discusses a broad family of ML algorithms that are used to automatically classify data points with one or more labels, such as spam/not spam, positive or negative sentiment, or any number of arbitrary categories.

⦁ Chapter 6, Association Rule Algorithms, looks at several algorithms used to make associations between data points based on frequency of co-occurrence, such as products that are often bought together on e-commerce stores.

⦁ Chapter 7, Forecasting with Regression Algorithms, looks at time series data, such as server load or stock prices, and discusses various algorithms that can be used to analyze patterns and make predictions for the future.

⦁ Chapter 8, Artificial Neural Network Algorithms, teaches you the foundations of neural networks, including their core concepts, architecture, training algorithms, and implementations.

⦁ Chapter 9, Deep Neural Networks, digs deeper into neural networks and explores various exotic topologies that can solve problems such as image recognition, computer vision, speech recognition, and language modeling.

⦁ Chapter 10, Natural Language Processing in Practice, discusses the overlap of natural language processing with ML. You learn several common techniques and tactics that you can use when applying machine learning to natural language tasks.

⦁ Chapter 11, Using Machine Learning in Real-Time Applications, discusses various practical approaches to deploying ML applications on production environments, with a particular focus on the data pipeline process.

⦁ Chapter 12, Choosing the Best Algorithm for Your Application, goes back to the basics and discusses the things you must consider in the first stages of a ML project, with a particular focus on choosing the best algorithm or set of algorithms for a given application.

작가 소개

⦁ Burak Kanber
Burak Kanber is an entrepreneur, software engineer, and the co-author of """"Genetic Algorithms in Java"""". He earned his Bachelor's and Master's degrees in Mechanical Engineering from the prestigious Cooper Union in New York City, where he concentrated on software modeling and simulation of hybrid vehicle powertrains.

Currently, Burak is a founder and the CTO of Tidal Labs, a popular enterprise influencer marketing platform. Previously, Burak had founded several startups, most notably a boutique design and engineering firm that helped startups and small businesses solve difficult technical problems. Through Tidal Labs, his engineering firm, and his other consulting work, Burak has helped design and produce dozens of successful products and has served as a technical advisor to many startups.

Burak's core competencies are in machine learning, web technologies (specifically PHP and JavaScript), engineering (software, hybrid vehicles, control systems), product design and agile development. He's also worked on several interactive art projects, is a musician, and is a published engineer.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 그림으로 이해하는 챗GPT 구조와 기술 (나카타니 슈요, 박광수)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 스프링 부트 3와 스프링 클라우드를 활용한 마이크로서비스 구축 (마그누스 라르손, 트랜스메이트)
  • PyTorch로 배우는 딥러닝과 생성형 AI (박유성)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • AI 에이전트 생태계 (이주환)
  • AWS 잘하는 개발자 되기 (김재욱)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • AI 프로덕트 기획과 운영 (마릴리 니카, 오성근)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 개정판 | 린 스타트업 (애시 모리아, 권혜정)
  • 객체지향의 사실과 오해 (조영호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전