본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Intelligent Mobile Projects with TensorFlow 상세페이지

Intelligent Mobile Projects with TensorFlow

Build 10+ Artificial Intelligence apps using TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2018.05.22 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 396 쪽
  • 29.8MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788628808
ECN
-
Intelligent Mobile Projects with TensorFlow

작품 정보

▶Book Description
As a developer, you always need to keep an eye out and be ready for what will be trending soon, while also focusing on what's trending currently. So, what's better than learning about the integration of the best of both worlds, the present and the future? Artificial Intelligence (AI) is widely regarded as the next big thing after mobile, and Google's TensorFlow is the leading open source machine learning framework, the hottest branch of AI. This book covers more than 10 complete iOS, Android, and Raspberry Pi apps powered by TensorFlow and built from scratch, running all kinds of cool TensorFlow models offline on-device: from computer vision, speech and language processing to generative adversarial networks and AlphaZero-like deep reinforcement learning. You'll learn how to use or retrain existing TensorFlow models, build your own models, and develop intelligent mobile apps running those TensorFlow models. You'll learn how to quickly build such apps with step-by-step tutorials and how to avoid many pitfalls in the process with lots of hard-earned troubleshooting tips.

▶What You Will Learn
⦁ Classify images with transfer learning
⦁ Detect objects and their locations
⦁ Transform pictures with amazing art styles
⦁ Understand simple speech commands
⦁ Describe images in natural language
⦁ Recognize drawing with Convolutional Neural Network and Long Short-Term Memory
⦁ Predict stock price with Recurrent Neural Network in TensorFlow and Keras
⦁ Generate and enhance images with generative adversarial networks
⦁ Build AlphaZero-like mobile game app in TensorFlow and Keras
⦁ Use TensorFlow Lite and Core ML on mobile
⦁ Develop TensorFlow apps on Raspberry Pi that can move, see, listen, speak, and learn

▶Key Features
⦁ Build TensorFlow-powered AI applications for mobile and embedded devices
⦁ Learn modern AI topics such as computer vision, NLP, and deep reinforcement learning
⦁ Get practical insights and exclusive working code not available in the TensorFlow documentation

▶Who This Book Is For
If you're an iOS/Android developer interested in building and retraining others' TensorFlow models and running them in your mobile apps, or if you're a TensorFlow developer and want to run your new and amazing TensorFlow models on mobile devices, this book is for you. You'll also benefit from this book if you're interested in TensorFlow Lite, Core ML, or TensorFlow on Raspberry Pi.

▶What this book covers
⦁ Chapter 1, Getting Started with Mobile TensorFlow, discusses how to set up TensorFlow on Mac and Ubuntu and NVIDIA GPU on Ubuntu and how to set up Xcode and Android Studio. We'll also discuss the difference between TensorFlow Mobile and TensorFlow Lite and when you should use them. Finally, we'll show you how to run the sample TensorFlow iOS and Android apps.

⦁ Chapter 2, Classifying Images with Transfer Learning, covers what is transfer learning and why you should use it, how to retrain the Inception v3 and MobileNet models for more accurate and faster dog breed recognition, and how to use the retrained models in sample iOS and Android apps. Then, we'll show you how to add TensorFlow to your own iOS app, both in Objective-C and Swift, and your own Android app for dog breed recognition.

⦁ Chapter 3, Detecting Objects and Their Locations, gives a quick overview of Object Detection, and then shows you how to set up the TensorFlow Object Detection API and use it to retrain SSD-MobileNet and Faster RCNN models. We'll also show you how to use the models used in the example TensorFlow Android app in your iOS app by manually building the TensorFlow iOS library to support non-default TensorFlow operations. Finally, we'll show you how to train YOLO2, another popular object detection model, which is also used in the example TensorFlow Android app, and how to use it in your iOS app.

⦁ Chapter 4, Transforming Pictures with Amazing Art Styles, first gives an overview of neural style transfer with their rapid progress in the last few years. Then, it shows you how to train fast neural style transfer models and use them in iOS and Android apps. After that, we'll cover how to use the TensorFlow Magenta multi-style model in your own iOS and Android apps to easily create amazing art styles.

⦁ Chapter 5, Understanding Simple Speech Commands, outlines speech recognition and shows you how to train a simple speech commands recognition model. We'll then show you how to use the model in Android as well as in iOS using both Objective-C and Swift. We'll also cover more tips on how to fix possible model loading and running errors on mobile.

⦁ Chapter 6, Describing Images in Natural Language, describes how image captioning works, and then it covers how to train and freeze an image captioning model in TensorFlow. We'll further discuss how to transform and optimize the complicated model to get it ready for running on mobile. Finally, we'll offer complete iOS and Android apps using the model to generate natural language description of images.

⦁ Chapter 7, Recognizing Drawing with CNN and LSTM, explains how drawing classification works, and discusses how to train, predict, and prepare the model. Then, we'll show you how to build another custom TensorFlow iOS library to use the model in a fun iOS doodling app. Finally, we'll show you how to build a custom TensorFlow Android library to fix a new model loading error and then use the model in your own Android app.

⦁ Chapter 8, Predicting Stock Price with RNN, takes you through RNN and how to use it to predict stock prices. Then, we'll inform you of how to build an RNN model with the TensorFlow API to predict stock prices, and how to build a RNN LSTM model with the easier-to-use Keras API to achieve the same goal. We'll test and see whether such models can beat a random buy or sell strategy. Finally, we'll show you how to run the TensorFlow and Keras models in both iOS and Android apps.

⦁ Chapter 9, Generating and Enhancing Images with GAN, gives an overview of what GAN is and why it has such great potential. Then, it oultines how to build and train a basic GAN model that can be used to generate human-like handwritten digits and a more advanced model that can enhance low resolution images to high resolution ones. Finally, we'll cover how to use the two GAN models in your iOS and Android apps.

⦁ Chapter 10, Building AlphaZero-like Mobile Game App, begins with how the latest and coolest AlphaZero works, and how to train and test a AlphaZero-like model to play a simple but fun game called Connect 4 in Keras with TensorFlow as backend. We'll then show you the complete iOS and Android apps to use the model and play the game Connect 4 on your mobile devices.

⦁ Chapter 11, Using TensorFlow Lite and Core ML on Mobile, demonstrates TensorFlow Lite and then shows you how to use a prebuilt TensorFlow model, a retrained TensorFlow model for TensorFlow Lite, and a custom TensorFlow Lite model in iOS. We'll also show you how to use TensorFlow Lite in Android. After that, we'll give an overview of Apple's Core ML and show you how to use Core ML with standard machine learning using Scikit- Learn. Finally, we'll cover how to use Core ML with TensorFlow and Keras.

⦁ Chapter 12, Developing TensorFlow Apps on Raspberry Pi, first looks at how to set up Raspberry Pi and make it move, and how to set up TensorFlow on Raspberry Pi. Then, we'll cover how to use the TensorFlow image recognition and audio recognition models, along with text to speech and robot movement APIs, to build a Raspberry Pi robot that can move, see, listen, and speak. Finally, we'll discuss in detail how to use OpenAI Gym and TensorFlow to build and train a powerful neural network-based reinforcement learning policy model from scratch in a simulated environment to make the robot learn to keep its balance.

작가 소개

⦁ Jeff Tang
Jeff Tang fell in love with classical AI more than two decades ago. After his MS in CS, he worked on Machine Translation for 2 years and then, to survive the long AI winter, he worked on enterprise apps, voice apps, web apps, and mobile apps at startups, AOL, Baidu, and Qualcomm. He developed a top-selling iOS app with millions of downloads and was recognized by Google as a Top Android Market Developer. He reconnected with modern AI in 2015 and knew that AI will be his passion and commitment for the next two decades. One of his favorite topics is to make AI available anytime anywhere and hence the book.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • Node js로 배우는 서버 사이드 개발 (강민정)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 타입스크립트, 리액트, Next.js로 배우는 실전 웹 애플리케이션 개발 (테지마 타쿠야, 요시다 타케토)
  • 혼자 공부하는 데이터 분석 with 파이썬 (박해선)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전