본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Big Data Architect's Handbook 상세페이지

Big Data Architect's Handbook

A guide to building proficiency in tools and systems used by leading big data experts

  • 관심 0
소장
전자책 정가
27,000원
판매가
27,000원
출간 정보
  • 2018.06.21 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 476 쪽
  • 26.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788836388
UCI
-
Big Data Architect's Handbook

작품 정보

▶Book Description
The big data architects are the "masters" of data, and hold high value in today's market. Handling big data, be it of good or bad quality, is not an easy task. The prime job for any big data architect is to build an end-to-end big data solution that integrates data from different sources and analyzes it to find useful, hidden insights.

Big Data Architect's Handbook takes you through developing a complete, end-to-end big data pipeline, which will lay the foundation for you and provide the necessary knowledge required to be an architect in big data. Right from understanding the design considerations to implementing a solid, efficient, and scalable data pipeline, this book walks you through all the essential aspects of big data. It also gives you an overview of how you can leverage the power of various big data tools such as Apache Hadoop and ElasticSearch in order to bring them together and build an efficient big data solution.

By the end of this book, you will be able to build your own design system which integrates, maintains, visualizes, and monitors your data. In addition, you will have a smooth design flow in each process, putting insights in action.

▶What You Will Learn
⦁ Learn Hadoop Ecosystem and Apache projects
⦁ Understand, compare NoSQL database and essential software architecture
⦁ Cloud infrastructure design considerations for big data
⦁ Explore application scenario of big data tools for daily activities
⦁ Learn to analyze and visualize results to uncover valuable insights
⦁ Build and run a big data application with sample code from end to end
⦁ Apply Machine Learning and AI to perform big data intelligence
⦁ Practice the daily activities performed by big data architects

▶Key Features
⦁ Learn to build and run a big data application with sample code
⦁ Explore examples to implement activities that a big data architect performs
⦁ Use Machine Learning and AI for structured and unstructured data

▶Who This Book Is For
Big Data Architect's Handbook is for you if you are an aspiring data professional, developer, or IT enthusiast who aims to be an all-round architect in big data. This book is your one-stop solution to enhance your knowledge and carry out easy to complex activities required to become a big data architect.

▶What this book covers
⦁ Chapter 1, Why Big Data?, explains what big data is, why we need big data, who should deal with big data, when to use big data, and how to use big data. The design consideration of the end-to-end big data solution, including cloud, Hadoop, network, analytics and so on, are also outlined here.

⦁ Chapter 2, Big Data Environment Setup, provides a step-by-step guide of how to setup environment to run big data applications.

⦁ Chapter 3, Hadoop Ecosystem, is about the Hadoop ecosystem. It consists of different open source modules, accessories, and Apache projects for reliable and scalable distributed computing. This chapter will teach you how to build a Hadoop big data system for streaming data with a step-by-step guide.

⦁ Chapter 4, NoSQL Database, explains the concepts, principles, properties, performance and hybrid of the popular NoSQL database so that a big data architect can confidently choose appropriate NoSQL for their projects. This chapter will teach you how to implement NoSQL for killer applications with a step-by-step guide.

⦁ Chapter 5, Off-the-Shelf Commercial Tools, introduces some popular commercial off-the-shelf tools for big data with a hands-on Stream Analytics example.

⦁ Chapter 6, Containerization, introduces the concept and application of container-based virtualization. It is an OS-level virtualization method for deploying and running distributed applications without launching an entire VM for each application. Moreover, management of Dockers and Kubernetes using Openshift is demonstrated here.

⦁ Chapter 7, Network Infrastructure, teaches essential network technology for an architect to design big data systems across racks, data centers, and geographical locations. Moreover, this chapter will teach you the network visualization tool via a step-by-step guide.

⦁ Chapter 8, Cloud Infrastructure, introduces essential considerations on cloud infrastructure design for big data from the perspective of performance and capability. The requirements of deploying big data in cloud are unique and quite different from traditional applications. Therefore, a big data architect must need careful design, especially estimating the amount of data to analyze by using the big data capability in the cloud, because not all public or private cloud offerings are built to accommodate big data solutions.

⦁ Chapter 9, Security and Monitoring, is about essential knowledge on security, including next-generation firewalls, DevOps security, and monitoring tools.

⦁ Chapter 10, Frontend Architecture, introduces the Frontend architecture, which is a collection of tools and processes that aims to improve the quality of our frontend code while creating a more efficient, scalable, and sustainable design for big data systems. To be a successful big data Architect, one critical factor is to present persuasive analytic results to mostly non-technical persons, such as C-level management, and decision-makers with a user-friendly, elegant, and responsive user graphic interface. This chapter will teach you how to use the React + Redux framework to build a responsive and easy debug user interface.

⦁ Chapter 11, Backend Architecture, shows how to design a scalable, resilient, manageable, and cost-effective distributed backend architecture with different combinations of technology. It handles business logic and data storage with a RESTful web API service.

⦁ Chapter 12, Machine Learning, teaches the essential concepts and killer applications of Machine Learning. You will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself and your enterprise. You'll learn about not only the theoretical underpinnings of learning, but also the practical know-how needed to quickly and powerfully apply these techniques to new problems.

⦁ Chapter 13, Artificial Intelligence, introduces AI and CNN with hands-on big data killer applications. The application for CNN or deep learning to work with machine learning is one good method to handle unstructured big data.

⦁ Chapter 14, Elasticsearch, shows how to use the open source tool Elasticsearch to do searching tasks in a big data system. This is because it is an enterprise-grade search engine, and easy to scale. More features of it are: handy REST API and JSON response, good documentation, Sense UI, stable and proven Lucene underlying engine, excellent Query DSL, multi-tenancy, advanced Search Features, configurable and extensible, percolation, custom analyzer, On-the-Fly Analyzer selection, rich ecosystem, and active community.

⦁ Chapter 15, Structured Data, introduces the use of open source tools to manipulate and analyze structured data.

⦁ Chapter 16, Unstructured Data, shows how to use open source tools to manipulate and analyze unstructured data. The readers will learn how to use machine learning and AI to extract information for analysis in killer applications such as a Retail Recommendation System and Facial Recognition.

⦁ Chapter 17, Data Visualization, illustrates how to use tools to present analytical results to users using two top-of-the-shelf tools, Matplotlib and D3.js.

⦁ Chapter 18, Financial Trading System, covers algorithmic trading benefits and strategies, and how to design and deploy an end-to-end Financial Trading System via a step-by-step guide.

⦁ Chapter 19, Retail Recommendation System, shows how to design and deploy an end-to-end Retail Recommendation System through a step-by-step guide.

작가 소개

⦁ Syed Muhammad Fahad Akhtar
Syed Muhammad Fahad Akhtar has 12+ years of industry experience in analysis, designing, developing, integrating, and managing large applications in different industries. He has vast exposure of working in UAE, Pakistan, and Malaysia and is currently working in ASIT Solutions as a solution architect

He received his master's from Torrens University, Australia, and bachelor of science in computer engineering from National University of Computer and Emerging Sciences (FAST), Pakistan.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 실무로 통하는 LLM 애플리케이션 설계 (수하스 파이, 박조은)
  • AI 에이전트 생태계 (이주환)
  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • SQLite, MCP, 바이브 코딩을 활용한 데이터 분석과 업무 자동화 (박찬규, 윤가희)
  • 그림으로 쉽게 배우는 HTML+CSS+자바스크립트 (임지영)
  • 개정판 | 프롬프트 엔지니어링 (반병현)
  • 요즘 바이브 코딩 커서 AI 30가지 프로그램 만들기 (박현규)
  • 소문난 명강의 : 크리핵티브의 한 권으로 끝내는 웹 해킹 바이블 (하동민)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 데이터 중심 애플리케이션 설계 (마틴 클레프만, 정재부)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전