본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Building Machine Learning Systems with Python Third Edition 상세페이지

Building Machine Learning Systems with Python Third Edition

Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2018.07.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 395 쪽
  • 15.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788622226
ECN
-
Building Machine Learning Systems with Python Third Edition

작품 정보

▶Book Description
Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems.

Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you'll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems.

By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks.

▶What You Will Learn
⦁ Build a classification system that can be applied to text, images, and sound
⦁ Employ Amazon Web Services (AWS) to run analysis on the cloud
⦁ Solve problems related to regression using scikit-learn and TensorFlow
⦁ Recommend products to users based on their past purchases
⦁ Understand different ways to apply deep neural networks on structured data
⦁ Address recent developments in the field of computer vision and reinforcement learning

▶Key Features
⦁ Develop your own Python-based machine learning system
⦁ Discover how Python offers multiple algorithms for modern machine learning systems
⦁ Explore key Python machine learning libraries to implement in your projects

▶Who This Book Is For
Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.

▶What this book covers
⦁ Chapter 1, Getting Started with Python Machine Learning, introduces the basic idea of machine learning and TensorFlow with a very simple example. Despite its simplicity, it will challenge us with the risk of overfitting.

⦁ Chapter 2, Classifying with Real-world Examples, uses real data to explore classification by training a computer to be able to distinguish between different classes of flowers.

⦁ Chapter 3, Regression, explains how to use regression to handle data, a classic topic that is still relevant today. You will also learn about advanced regression techniques such as Lasso and ElasticNet.

⦁ Chapter 4, Classification I –. Detecting Poor Answers, demonstrates how to use the biasvariance trade-off to debug machine learning models, though this chapter is mainly about using logistic regression to ascertain whether a user's answer to a question is good or bad.

⦁ Chapter 5, Dimensionality Reduction, explores what other methods exist to help us to downsize data so that it is chewable by our machine learning algorithms.

⦁ Chapter 6, Clustering –. Finding Related Posts, demonstrates how powerful the bag of words approach is by applying it to find similar posts without really understanding them.

⦁ Chapter 7, Recommendations, builds recommendation systems based on customer product ratings. We will also see how to build recommendations from shopping data without the need for ratings data (which users do not always provide).

⦁ Chapter 8, Artificial Neural Networks and Deep Learning, deals with the fundamentals and examples of CNN and RNN using TensorFlow.

⦁ Chapter 9, Classification II –. Sentiment Analysis, explains how Naive Bayes works, and how to use it to classify tweets to see whether they are positive or negative.

⦁ Chapter 10, Topic Modeling, moves beyond assigning each post to a single cluster to assigning posts to several topics, as real texts can deal with multiple topics.

⦁ Chapter 11, Classification III –. Music Genre Classification, sets the scene of someone having scrambled our huge music collection, our only hope of creating order being to let a machine learner classify our songs. It turns out that it is sometimes better to trust someone else's expertise to create features ourselves. The chapter also covers the conversion of speech into text.

⦁ Chapter 12, Computer Vision, demonstrates how to apply classification in the specific context of handling images by extracting features from data. We also see how these methods can be adapted to find similar images in a collection, and the applications of CNN and GAN using TensorFlow.

⦁ Chapter 13, Reinforcement Learning, covers the fundamentals of reinforcement learning and Deep Q networks on Atari game playing.

⦁ Chapter 14, Bigger Data, explores some approaches to dealing with larger data by taking advantage of multiple cores or computing clusters. It also introduces cloud computing (using Amazon Web Services as our cloud provider).

작가 소개

⦁ Luis Pedro Coelho
Luis Pedro Coelho is a computational biologist who analyzes DNA from microbial communities to characterize their behavior. He has also worked extensively in bioimage informatics?the application of machine learning techniques for the analysis of images of biological specimens. His main focus is on the processing and integration of large-scale datasets. He has a PhD from Carnegie Mellon University and has authored several scientific publications. In 2004, he began developing in Python and has contributed to several open source libraries. He is currently a faculty member at Fudan University in Shanghai.

⦁ Willi Richert
Willi Richert has a PhD in machine learning/robotics, where he has used reinforcement learning, hidden Markov models, and Bayesian networks to let heterogeneous robots learn by imitation. Now at Microsoft, he is involved in various machine learning areas, such as deep learning, active learning, or statistical machine translation. Willi started as a child with BASIC on his Commodore 128. Later, he discovered Turbo Pascal, then Java, then C++-only to finally arrive at his true love: Python.

⦁ Matthieu Brucher
Matthieu Brucher is a computer scientist who specializes in high-performance computing and computational modeling and currently works for JPMorgan in their quantitative research branch. He is also the lead developer of Audio ToolKit, a library for real-time audio signal processing. He has a PhD in machine learning and signals processing from the University of Strasbourg, two Master of Science degrees-one in digital electronics and signal processing and another in automation - from the University of Paris XI and Supelec, as well as a Master of Music degree from Bath Spa University.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 모던 리액트 Deep Dive (김용찬)
  • 그로킹 동시성 (키릴 보브로프, 심효섭)
  • 해커톤 (노아론)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • 한 권으로 배우는 게임 프로그래밍 (박태준, 박효재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전