본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Building Machine Learning Systems with Python Third Edition 상세페이지

Building Machine Learning Systems with Python Third Edition

Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow

  • 관심 0
소장
전자책 정가
22,000원
판매가
22,000원
출간 정보
  • 2018.07.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 395 쪽
  • 15.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788622226
UCI
-
Building Machine Learning Systems with Python Third Edition

작품 정보

▶Book Description
Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems.

Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you'll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems.

By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks.

▶What You Will Learn
⦁ Build a classification system that can be applied to text, images, and sound
⦁ Employ Amazon Web Services (AWS) to run analysis on the cloud
⦁ Solve problems related to regression using scikit-learn and TensorFlow
⦁ Recommend products to users based on their past purchases
⦁ Understand different ways to apply deep neural networks on structured data
⦁ Address recent developments in the field of computer vision and reinforcement learning

▶Key Features
⦁ Develop your own Python-based machine learning system
⦁ Discover how Python offers multiple algorithms for modern machine learning systems
⦁ Explore key Python machine learning libraries to implement in your projects

▶Who This Book Is For
Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.

▶What this book covers
⦁ Chapter 1, Getting Started with Python Machine Learning, introduces the basic idea of machine learning and TensorFlow with a very simple example. Despite its simplicity, it will challenge us with the risk of overfitting.

⦁ Chapter 2, Classifying with Real-world Examples, uses real data to explore classification by training a computer to be able to distinguish between different classes of flowers.

⦁ Chapter 3, Regression, explains how to use regression to handle data, a classic topic that is still relevant today. You will also learn about advanced regression techniques such as Lasso and ElasticNet.

⦁ Chapter 4, Classification I –. Detecting Poor Answers, demonstrates how to use the biasvariance trade-off to debug machine learning models, though this chapter is mainly about using logistic regression to ascertain whether a user's answer to a question is good or bad.

⦁ Chapter 5, Dimensionality Reduction, explores what other methods exist to help us to downsize data so that it is chewable by our machine learning algorithms.

⦁ Chapter 6, Clustering –. Finding Related Posts, demonstrates how powerful the bag of words approach is by applying it to find similar posts without really understanding them.

⦁ Chapter 7, Recommendations, builds recommendation systems based on customer product ratings. We will also see how to build recommendations from shopping data without the need for ratings data (which users do not always provide).

⦁ Chapter 8, Artificial Neural Networks and Deep Learning, deals with the fundamentals and examples of CNN and RNN using TensorFlow.

⦁ Chapter 9, Classification II –. Sentiment Analysis, explains how Naive Bayes works, and how to use it to classify tweets to see whether they are positive or negative.

⦁ Chapter 10, Topic Modeling, moves beyond assigning each post to a single cluster to assigning posts to several topics, as real texts can deal with multiple topics.

⦁ Chapter 11, Classification III –. Music Genre Classification, sets the scene of someone having scrambled our huge music collection, our only hope of creating order being to let a machine learner classify our songs. It turns out that it is sometimes better to trust someone else's expertise to create features ourselves. The chapter also covers the conversion of speech into text.

⦁ Chapter 12, Computer Vision, demonstrates how to apply classification in the specific context of handling images by extracting features from data. We also see how these methods can be adapted to find similar images in a collection, and the applications of CNN and GAN using TensorFlow.

⦁ Chapter 13, Reinforcement Learning, covers the fundamentals of reinforcement learning and Deep Q networks on Atari game playing.

⦁ Chapter 14, Bigger Data, explores some approaches to dealing with larger data by taking advantage of multiple cores or computing clusters. It also introduces cloud computing (using Amazon Web Services as our cloud provider).

작가 소개

⦁ Luis Pedro Coelho
Luis Pedro Coelho is a computational biologist who analyzes DNA from microbial communities to characterize their behavior. He has also worked extensively in bioimage informatics?the application of machine learning techniques for the analysis of images of biological specimens. His main focus is on the processing and integration of large-scale datasets. He has a PhD from Carnegie Mellon University and has authored several scientific publications. In 2004, he began developing in Python and has contributed to several open source libraries. He is currently a faculty member at Fudan University in Shanghai.

⦁ Willi Richert
Willi Richert has a PhD in machine learning/robotics, where he has used reinforcement learning, hidden Markov models, and Bayesian networks to let heterogeneous robots learn by imitation. Now at Microsoft, he is involved in various machine learning areas, such as deep learning, active learning, or statistical machine translation. Willi started as a child with BASIC on his Commodore 128. Later, he discovered Turbo Pascal, then Java, then C++-only to finally arrive at his true love: Python.

⦁ Matthieu Brucher
Matthieu Brucher is a computer scientist who specializes in high-performance computing and computational modeling and currently works for JPMorgan in their quantitative research branch. He is also the lead developer of Audio ToolKit, a library for real-time audio signal processing. He has a PhD in machine learning and signals processing from the University of Strasbourg, two Master of Science degrees-one in digital electronics and signal processing and another in automation - from the University of Paris XI and Supelec, as well as a Master of Music degree from Bath Spa University.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • AI 에이전트 생태계 (이주환)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 밑바닥부터 시작하는 웹 브라우저 (파벨 판체카, 크리스 해럴슨)
  • 요즘 당근 AI 개발 (당근 팀)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • 그림으로 이해하는 서버 구조와 기술 (요코타 카즈키, 엔도 유키)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 오블리의 AI 3D 생성 실무 바이블 (김은규(오블리))
  • SQLite, MCP, 바이브 코딩을 활용한 데이터 분석과 업무 자동화 (박찬규, 윤가희)
  • 실무로 통하는 LLM 애플리케이션 설계 (수하스 파이, 박조은)
  • 디자인 외주비 0원 시대: 나노바나나 AI 디자인 실전 가이드 (심화영)
  • 요즘 바이브 코딩 커서 AI 30가지 프로그램 만들기 (박현규)
  • 처음이지만 프로처럼 쓰는 노션 Notion (박한용(노션너굴))
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! -모델링편- (나츠모리 카츠, 김모세)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전