본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Intelligent Agents with OpenAI Gym 상세페이지

Hands-On Intelligent Agents with OpenAI Gym

Your guide to developing AI agents using deep reinforcement learning

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2018.07.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 246 쪽
  • 22.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788835138
ECN
-
Hands-On Intelligent Agents with OpenAI Gym

작품 정보

▶Book Description
Many real-world problems can be broken down into tasks that require a series of decisions to be made or actions to be taken. The ability to solve such tasks without a machine being programmed requires a machine to be artificially intelligent and capable of learning to adapt. This book is an easy-to-follow guide to implementing learning algorithms for machine software agents in order to solve discrete or continuous sequential decision making and control tasks.

Hands-On Intelligent Agents with OpenAI Gym takes you through the process of building intelligent agent algorithms using deep reinforcement learning starting from the implementation of the building blocks for configuring, training, logging, visualizing, testing, and monitoring the agent. You will walk through the process of building intelligent agents from scratch to perform a variety of tasks. In the closing chapters, the book provides an overview of the latest learning environments and learning algorithms, along with pointers to more resources that will help you take your deep reinforcement learning skills to the next level.

▶What You Will Learn
⦁ Explore intelligent agents and learning environments
⦁ Understand the basics of RL and deep RL
⦁ Get started with OpenAI Gym and PyTorch for deep reinforcement learning
⦁ Discover deep Q learning agents to solve discrete optimal control tasks
⦁ Create custom learning environments for real-world problems
⦁ Apply a deep actor-critic agent to drive a car autonomously in CARLA
⦁ Use the latest learning environments and algorithms to upgrade your intelligent agent development skills

▶Key Features
⦁ Explore the OpenAI Gym toolkit and interface to use over 700 learning tasks
⦁ Implement agents to solve simple to complex AI problems
⦁ Study learning environments and discover how to create your own

▶Who This Book Is For
If you’re a student, game/machine learning developer, or AI enthusiast looking to get started with building intelligent agents and algorithms to solve a variety of problems with the OpenAI Gym interface, this book is for you. You will also find this book useful if you want to learn how to build deep reinforcement learning-based agents to solve problems in your domain of interest. Though the book covers all the basic concepts that you need to know, some working knowledge of Python programming language will help you get the most out of it.

▶What this book covers
⦁ Chapter 1, Introduction to Intelligent Agents and Learning Environments, which enables the development of several AI systems. It sheds light on the important features of the toolkit, which provides you with endless opportunities to create autonomous intelligent agents to solve several algorithmic tasks, games, and control tasks. By the end of this chapter, you will know enough to create an instance of a Gym environment using Python yourself.

⦁ Chapter 2, Reinforcement Learning and Deep Reinforcement Learning, provides a concise explanation of the basic terminologies and concepts in reinforcement learning. The chapter will give you a good understanding of the basic reinforcement learning framework for developing AI agents. The chapter will also introduce deep reinforcement learning and provide you with a flavor of the types of advanced problem the algorithms enable you to solve.

⦁ Chapter 3, Getting Started with OpenAI Gym and Deep Reinforcement Learning, jumps right in and gets your development machine/computer ready with all the required installations and configurations needed for using the learning environments as well as PyTorch for developing deep learning algorithms.

⦁ Chapter 4, Exploring the Gym and its Features, walks you through the inventory of learning environments available with the Gym library starting with the overview of how the environments are classified and named which will help you choose the correct version and type of environments from the 700+ learning environments available. You will then learn to explore the Gym, test out any of the environment you would like to, understand the interface and description of various environments.

⦁ Chapter 5, Implementing your First Learning Agent –. Solving the Mountain Car problem, explains how to implement an AI agent using reinforcement learning to solve the mountain car problem. You will implement the agent, train it, and see it improve on its own. The implementation details will enable you to apply the concepts to develop and train an agent to solve various other tasks and/or games.

⦁ Chapter 6, Implementing an Intelligent Agent for Optimal Control using Deep Q-Learning, covers various methods to improve Q-learning including action-value function approximation using deep neural network, experience replay, target networks and also the necessary utilities and building-blocks that are useful for training and testing deep reinforcement learning agents in general. You will implement a DQN based intelligent agent for taking optimal discrete control actions and train it to play several Atari games and watch the agent's performance.

⦁ Chapter 7, Creating Custom OpenAI Gym Environments –. Carla Driving Simulator, will teach you how to convert a real-world problem into a learning environment with interfaces compatible with the OpenAI Gym. You will learn the anatomy of Gym environments and create your custom learning environment based on the Carla simulator that can be registered with the Gym and used for training agents that we develop.

⦁ Chapter 8, Implementing an Intelligent & Autonomous Car Driving Agent using Deep Actor-Critic Algorithm, teaches you the fundamentals of the Policy Gradient based reinforcement learning algorithms and helps you intuitively understand the deep n-step advantage actorcritic algorithm. You will then learn to implement a super-intelligent agent that can drive a car autonomously in the Carla simulator using both the synchronous as well as asynchronous implementation of the deep n-step advantage actor-critic algorithm.

⦁ Chapter 9, Exploring the Learning Environment Landscape –. Roboschool, Gym-Retro, StarCraft-II, DeepMindLab, takes you beyond the Gym and shows you around other well developed suite of learning environments that you can use to train your intelligent agents. You will understand and learn to use the various Roboschool environments, the Gym Retro environments, the very popular Star Craft II environment and the DeepMind Lab environments.

⦁ Chapter 10, Exploring the Learning Algorithm Landscape –. DDPG (Actor-Critic), PPO (Policy- Gradient), Rainbow (Value-Based), Provides insights into latest deep reinforcement learning algorithms with their fundamentals demystified based on what you learned in the previous chapters of this book. You will get a quick understanding of the core concepts behind the best algorithms in the three different classes of deep reinforcement learning algorithms namely: The actor-critic based Deep Deterministic Policy Gradient (DDPG) algorithm, the Policy Gradient based Proximal Policy Optimization (PPO) and the value based Rainbow algorithm.

작가 소개

⦁ Praveen Palanisamy
Praveen Palanisamy works on developing autonomous intelligent systems. He is currently an AI researcher at General Motors R&D. He develops planning and decision-making algorithms and systems that use deep reinforcement learning for autonomous driving. Previously, he was at the Robotics Institute, Carnegie Mellon University, where he worked on autonomous navigation, including perception and AI for mobile robots. He has experience developing complete, autonomous, robotic systems from scratch.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 지식그래프 (이광배, 이채원)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 객체지향의 사실과 오해 (조영호)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 실전! 스프링 부트 3 & 리액트로 시작하는 모던 웹 애플리케이션 개발 (주하 힌쿨라, 변영인)
  • 혼자 공부하는 네트워크 (강민철)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전