본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Natural Language Processing with Python 상세페이지

Hands-On Natural Language Processing with Python

A practical guide to applying deep learning architectures to your NLP applications

  • 관심 0
소장
전자책 정가
12,000원
판매가
12,000원
출간 정보
  • 2018.07.18 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 307 쪽
  • 18.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789135916
ECN
-
Hands-On Natural Language Processing with Python

작품 정보

▶Book Description
Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges.

To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow.

By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.

▶What You Will Learn
⦁ Implement semantic embedding of words to classify and find entities
⦁ Convert words to vectors by training in order to perform arithmetic operations
⦁ Train a deep learning model to detect classification of tweets and news
⦁ Implement a question-answer model with search and RNN models
⦁ Train models for various text classification datasets using CNN
⦁ Implement WaveNet a deep generative model for producing a natural-sounding voice
⦁ Convert voice-to-text and text-to-voice
⦁ Train a model to convert speech-to-text using DeepSpeech

▶Key Features
⦁ Weave neural networks into linguistic applications across various platforms
⦁ Perform NLP tasks and train its models using NLTK and TensorFlow
⦁ Boost your NLP models with strong deep learning architectures such as CNNs and RNNs

▶Who This Book Is For
This book is intended for developers who want to leverage NLP techniques to develop intelligent applications with rich human-centric interfaces. The book assumes introductory knowledge of machine learning (ML) or deep learning and intermediate Python programming skills. Our aim is to introduce cutting-edge techniques for NLP tasks, such as sentiment detection, conversational systems, language translation, speech-to-text, and much more, using the TensorFlow framework and Python.

The reader will go from the basic concepts of deep learning to state-of-the-art algorithms and best practices for dealing with natural language. Our focus is on implementing applications using real-world data and deploying deep learning models to add human capabilities to commercial applications in a production environment.

▶What this book covers
⦁ Chapter 1, Getting Started, explores the basic concepts of NLP and the various problems it tries to solve. We also look at some of the real-world applications to give the reader the feeling of the wide range of applications that leverage NLP.

⦁ Chapter 2, Text Classification and POS Tagging Using NLTK, introduces the popular NLTK Python library. We will be using NLTK to describe basic NLP tasks, such as tokenizing, stemming, tagging, and classic text classification. We also explore POS tagging with NLTK. We provide the reader with the tools and techniques necessary to prepare data for input into deep learning models.

⦁ Chapter 3, Deep Learning and TensorFlow, introduces the basic concepts of deep learning. This chapter will also help the reader to set up the environment and tools such as TensorFlow. At the end of the chapter, the reader will get an understanding of basic deep learning concepts, such as CNN, RNN, LSTM, attention-based models, and problems in NLP.

⦁ Chapter 4, Semantic Embedding Using Shallow Models, explores how to identify semantic relationships between words in a document, and in the process, we obtain a vector representation for words in a corpus. The chapter describes developing word embedding models, such as CBOW using neural networks. It also describes techniques for developing neural network models to obtain document vectors. At the end of this chapter, the reader will get familiar with training embeddings for word, sentence, and document; and visualize simple networks.

⦁ Chapter 5, Text Classification Using LSTM, discusses various approaches for classifying text, a specific application of which is to classify sentiments of words or phrases in a document. The chapter introduces the problem of text classification. Following this, we describe techniques for developing deep learning models using CNNs and LSTMs. The chapter also explains transfer learning for text classification using pretrained word embeddings. At the end, the reader will get familiar with implementing deep learning models for sentiment classification, spam detection, and using pretrained word embeddings for his/her classification task.

⦁ Chapter 6, Searching and Deduplicating Using CNNs, covers the problems of searching, matching and deduplicating documents and approaches used in solving them. The chapter describes developing deep learning models for searching text in a corpus. At the end of this chapter, you will learn to implement a CNN-based deep learning model for searching and deduplicating text.

⦁ Chapter 7, Named Entity Recognition Using Character LSTM, describes methods and approaches to perform Named Entity Recognition (NER), a sub-task of information extraction, to locate and classify entities in text of a document. The chapter introduces the problem of NER and the applications where it can be used. We then explain the implementation of a deep learning model using character-based LSTM for identifying named entities trained using labeled datasets.

⦁ Chapter 8, Text Generation and Summarization Using GRUs, covers the methods used for the task of generating text, an extension of which can be used to create summaries from text data. We then explain the implementation of a deep learning model for generating text. This is followed by a description of implementing GRU-based deep learning models to summarize text. At the end of this chapter, the reader will learn the techniques of implementing deep learning models for text generation and summarization.

⦁ Chapter 9, Question-Answering and Chatbots Using Memory Networks, describes how to train a deep learning model to answer questions and extend it to build a chatbot. The chapter introduces the problem of question answering and the approaches used in building an answering engine using deep learning models. We then describe how to leverage a question-answering engine to build a chatbot capable of answering questions like a conversation. At the end of this chapter, you will be able to implement an interactive chatbot.

⦁ Chapter 10, Machine Translation Using Attention-Based Models, covers various methods for translating text from one language to another, without the need to learn the grammar structure of either language. The chapter introduces traditional machine translation approaches, such as Hidden Markov Model (HMM) based methods. We then explain the implementation of an encoder-decoder model with attention for translating text from French to the English language. At the end of this chapter, the reader will be able to implement deep learning models for translating text.

⦁ Chapter 11, Speech Recognition Using Deep Speech, describes the problem of converting voice to text, as a beginning of a conversational interface. The chapter begins with feature extraction from speech data. This is followed by a brief introduction of the deep speech architecture. We then explain the detailed implementation of the Deep Speech architecture to transcribe speech to text. At the end of this chapter, the reader will be equipped with the knowledge to implement a speech-to-text deep learning model.

⦁ Chapter 12, Text to Speech Using Tacotron, describes the problem of converting text to speech. The chapter describes the implementation of the Tacotron model to convert text to voice. At the end, the reader will get familiar with the implementation of a text-to-speech model based on the Tacotron architecture.

⦁ Chapter 13, Deploying Trained Models, is the concluding chapter and describes model deployments in various cloud and mobile platforms.

작가 소개

⦁ Rajesh Arumugam
Rajesh Arumugam is an ML developer at SAP, Singapore. Previously, he developed ML solutions for smart city development in areas such as passenger flow analysis in public transit systems and optimization of energy consumption in buildings when working with Centre for Social Innovation at Hitachi Asia, Singapore. He has published papers in conferences and has pending patents in storage and ML. He holds a PhD in computer engineering from Nanyang Technological University, Singapore.

⦁ Rajalingappaa Shanmugamani
Rajalingappaa Shanmugamani is a deep learning lead at SAP, Singapore. Previously, he worked and consulted at various start-ups for developing computer vision products. He has a masters from IIT Madras, where his thesis was based on applications of computer vision in manufacturing. He has published articles in peer-reviewed journals and conferences and applied for a few patents in ML. In his spare time, he teaches programming and machine learning to school students and engineers.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 코딩 자율학습 리액트 프런트엔드 개발 입문 (김기수)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 개정판 | 소문난 명강의_소플의 처음 만난 리액트 2판 (이인제)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • Hello Coding HTML5+CSS3 (황재호)
  • 개정판 | Do it! 알고리즘 코딩 테스트 C++ 편 (김종관)
  • 개정판 | Do it! 알고리즘 코딩 테스트 자바 편 (김종관)
  • 개정4판 | 모두의 딥러닝 (조태호)
  • 그림으로 이해하는 네트워크 구조와 기술 (나카오 신지, 김성훈)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전