본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning with Core ML 상세페이지

Machine Learning with Core ML

An iOS developer's guide to implementing machine learning in mobile apps

  • 관심 0
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2018.06.28 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 368 쪽
  • 62.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788835596
ECN
-
Machine Learning with Core ML

작품 정보

▶Book Description
Core ML is a popular framework by Apple, with APIs designed to support various machine learning tasks. It allows you to train your machine learning models and then integrate them into your iOS apps.

Machine Learning with Core ML is a fun and practical guide that not only demystifies Core ML but also sheds light on machine learning. In this book, you’ll walk through realistic and interesting examples of machine learning in the context of mobile platforms (specifically iOS). You’ll learn to implement Core ML for visual-based applications using the principles of transfer learning and neural networks. Having got to grips with the basics, you’ll discover a series of seven examples, each providing a new use-case that uncovers how machine learning can be applied along with the related concepts.

By the end of the book, you will have the skills required to put machine learning to work in their own applications, using the Core ML APIs]

▶What You Will Learn
⦁ Understand components of an ML project using algorithms, problems, and data
⦁ Master Core ML by obtaining and importing machine learning model, and generate classes
⦁ Prepare data for machine learning model and interpret results for optimized solutions
⦁ Create and optimize custom layers for unsupported layers
⦁ Apply CoreML to image and video data using CNN
⦁ Learn the qualities of RNN to recognize sketches, and augment drawing
⦁ Use Core ML transfer learning to execute style transfer on images

▶Key Features
⦁ Explore the concepts of machine learning and Apple’s Core ML APIs
⦁ Use Core ML to understand and transform images and videos
⦁ Exploit the power of using CNN and RNN in iOS applications

▶Who This Book Is For
Machine Learning with Core ML is for you if you are an intermediate iOS developer interested in applying machine learning to your mobile apps. This book is also for those who are machine learning developers or deep learning practitioners who want to bring the power of neural networks in their iOS apps. Some exposure to machine learning concepts would be beneficial but not essential, as this book acts as a launchpad into the world of machine learning for

▶What this book covers
⦁ Chapter 1, Introduction to Machine Learning, provides a brief introduction to ML, including some explanation of the core concepts, the types of problems, algorithms, and general workflow of creating and using a ML models. The chapter concludes by exploring some examples where ML is being applied.

⦁ Chapter 2, Introduction to Apple Core ML, introduces Core ML, discussing what it is, what it is not, and the general workflow for using it.

⦁ Chapter 3, Recognizing Objects in the World, walks through building a Core ML application from start to finish. By the end of the chapter, we would have been through the whole process of obtaining a model, importing it into the project, and making use of it.

⦁ Chapter 4, Emotion Detection with CNNs, explores the possibilities of computers understanding us better, specifically our mood. We start by building our intuition of how ML can learn to infer your mood, and then put this to practice by building an application that does just that. We also use this as an opportunity to introduce the Vision framework and see how it complements Core ML.

⦁ Chapter 5, Locating Objects in the World, goes beyond recognizing a single object to being able to recognize and locate multiple objects within a single image through object detection. After building our understanding of how it works, we move on to applying it to a visual search application that filters not only by object but also by composition of objects. In this chapter, we'll also get an opportunity to extend Core ML by implementing customer layers.

⦁ Chapter 6, Creating Art with Style Transfer, uncovers the secrets behind the popular photo effects application, Prisma. We start by discussing how a model can be taught to differentiate between the style and content of an image, and then go on to build a version of Prisma that applies a style from one image to another. We wrap up this chapter by looking at ways to optimize the model.

⦁ Chapter 7, Assisted Drawing with CNNs, walks through building an application that can recognize a users sketch using the same concepts that have been introduced in previous chapters. Once what the user is trying to sketch has been recognized, we look at how we can find similar substitutes using the feature vectors from a CNN.

⦁ Chapter 8, Assisted Drawing with RNNs, builds on the previous chapter and explores replacing the the convolution neural network (CNN) with a recurrent neural network (RNN) for sketch classification, thus introducing RNNs and showing how they can be applied to images. Along with a discussion on learning sequences, we will also delve into the details of how to download and compile Core ML models remotely.

⦁ Chapter 9, Object Segmentation Using CNNs, walks through building an ActionShot photography application. And in doing so, we introduce another model and accompanying concepts, and get some hands-on experience of preparing and processing data.

⦁ Chapter 10, An Introduction to Create ML, is the last chapter. We introduce Create ML, a framework for creating and training Core ML models within Xcode using Swift. By the end of this chapter, you will know how to quickly create, train, and deploy a custom models.

작가 소개

⦁ Joshua Newnham
Joshua Newnham is a technology lead at a global design firm, Method, focusing on the intersection of design and artificial intelligence (AI), specifically in the areas of computational design and human computer interaction.

Prior to this, he was a technical director at Masters of Pie, a virtual reality (VR) and augmented reality (AR) studio focused on building collaborative tools for engineers and creatives.

리뷰

5.0

구매자 별점
1명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 코딩 자율학습 리액트 프런트엔드 개발 입문 (김기수)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 모던 리액트 Deep Dive (김용찬)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정판 | 소문난 명강의_소플의 처음 만난 리액트 2판 (이인제)
  • 도메인 주도 설계 (에릭 에반스, 이대엽)
  • Hello Coding HTML5+CSS3 (황재호)
  • 개정판 | Do it! 알고리즘 코딩 테스트 C++ 편 (김종관)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전