본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning Algorithms Second Edition 상세페이지

Machine Learning Algorithms Second Edition

Popular algorithms for data science and machine learning

  • 관심 1
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2018.08.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 514 쪽
  • 65.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789345483
ECN
-
Machine Learning Algorithms Second Edition

작품 정보

▶Book Description
Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

▶What You Will Learn
⦁ Study feature selection and the feature engineering process
⦁ Assess performance and error trade-offs for linear regression
⦁ Build a data model and understand how it works by using different types of algorithm
⦁ Learn to tune the parameters of Support Vector Machines (SVM)
⦁ Explore the concept of natural language processing (NLP) and recommendation systems
⦁ Create a machine learning architecture from scratch

▶Key Features
⦁ Explore statistics and complex mathematics for data-intensive applications
⦁ Discover new developments in EM algorithm, PCA, and bayesian regression
⦁ Study patterns and make predictions across various datasets

▶Who This Book Is For
Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

▶What this book covers
⦁ Chapter 1, A Gentle Introduction to Machine Learning, introduces the world of machine learning, explaining the fundamental concepts of the most important approaches to creating intelligent applications and focusing on the different kinds of learning methods.

⦁ Chapter 2, Important Elements in Machine Learning, explains the mathematical concepts regarding the most common machine learning problems, including the concept of learnability and some important elements of information theory. This chapter contains theoretical elements, but it's extremely helpful if you are learning this topic from scratch because it provides an insight into the most important mathematical tools employed in the majority of algorithms.

⦁ Chapter 3, Feature Selection and Feature Engineering, describes the most important techniques for preprocessing a dataset, selecting the most informative features, and reducing the original dimensionality.

⦁ Chapter 4, Regression Algorithms, describes the linear regression algorithm and its optimizations: Ridge, Lasso, and ElasticNet. It continues with more advanced models that can be employed to solve non-linear regression problems or to mitigate the effect of outliers.

⦁ Chapter 5, Linear Classification Algorithms, introduces the concept of linear classification, focusing on logistic regression, perceptrons, stochastic gradient descent algorithms, and passive-aggressive algorithms. The second part of the chapter covers the most important evaluation metrics, which are used to measure the performance of a model and find the optimal hyperparameter set.

⦁ Chapter 6, Naive Bayes and Discriminant Analysis, explains the Bayes probability theory and describes the structure of the most diffused Naive Bayes classifiers. In the second part, linear and quadratic discriminant analysis is analyzed with some concrete examples.

⦁ Chapter 7, Support Vector Machines, introduces the SVM family of algorithms, focusing on both linear and non-linear classification problems thanks to the employment of the kernel trick. The last part of the chapter covers support vector regression and more complex classification models.

⦁ Chapter 8, Decision Trees and Ensemble Learning, explains the concept of a hierarchical decision process and describes the concepts of decision tree classification, random forests, bootstrapped and bagged trees, and voting classifiers.

⦁ Chapter 9, Clustering Fundamentals, introduces the concept of clustering, describing the Gaussian mixture, K-Nearest Neighbors, and K-means algorithms. The last part of the chapter covers different approaches to determining the optimal number of clusters and measuring the performance of a model.

⦁ Chapter 10, Advanced Clustering, introduces more complex clustering techniques (DBSCAN, Spectral Clustering, and Biclustering) that can be employed when the dataset structure is non-convex. In the second part of the chapter, two online clustering algorithms (mini-batch K-means and BIRCH) are introduced.

⦁ Chapter 11, Hierarchical Clustering, continues the explanation of more complex clustering algorithms started in the previous chapter and introduces the concepts of agglomerative clustering and dendrograms.

⦁ Chapter 12, Introducing Recommendation Systems, explains the most diffused algorithms employed in recommender systems: content- and user-based strategies, collaborative filtering, and alternating least square. A complete example based on Apache Spark shows how to process very large datasets using the ALS algorithm.

⦁ Chapter 13, Introduction to Natural Language Processing, explains the concept of the Bag-of- Words strategy and introduces the most important techniques required to efficiently process natural language datasets (tokenizing, stemming, stop-word removal, tagging, and vectorizing). An example of a classifier based on the Reuters dataset is also discussed in the last part of the chapter.

⦁ Chapter 14, Topic Modeling and Sentiment Analysis in NLP, introduces the concept of topic modeling and describes the most important algorithms, such as latent semantic analysis (both deterministic and probabilistic) and latent Dirichlet allocation. The second part of the chapter covers the problem of word embedding and sentiment analysis, explaining the most diffused approaches to address it.

⦁ Chapter 15, Introducing Neural Networks, introduces the world of deep learning, explaining the concept of neural networks and computational graphs. In the second part of the chapter, the high-level deep learning framework Keras is presented with a concrete example of a Multi-layer Perceptron.

⦁ Chapter 16, Advanced Deep Learning Models, explains the basic functionalities of the most important deep learning layers, with Keras examples of deep convolutional networks and recurrent (LSTM) networks for time-series processing. In the second part of the chapter, the TensorFlow framework is briefly introduced, along with some examples that expose some of its basic functionalities.

Chapter 17, Creating a Machine Learning Architecture, explains how to define a complete machine learning pipeline, focusing on the peculiarities and drawbacks of each step.

작가 소개

⦁ Giuseppe Bonaccorso
Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning solution design, management, and delivery. He got his MScEng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and NLP.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전