본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

TensorFlow Machine Learning Cookbook Second Edition 상세페이지

TensorFlow Machine Learning Cookbook Second Edition

Over 60 recipes to build intelligent machine learning systems with the power of Python

  • 관심 0
소장
전자책 정가
15,000원
판매가
15,000원
출간 정보
  • 2018.08.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 417 쪽
  • 8.4MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789130768
ECN
-
TensorFlow Machine Learning Cookbook Second Edition

작품 정보

▶Book Description
TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before.

With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production.

By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios.

▶What You Will Learn
⦁ Become familiar with the basic features of the TensorFlow library
⦁ Get to know Linear Regression techniques with TensorFlow
⦁ Learn SVMs with hands-on recipes
⦁ Implement neural networks to improve predictive modeling
⦁ Apply NLP and sentiment analysis to your data
⦁ Master CNN and RNN through practical recipes
⦁ Implement the gradient boosted random forest to predict housing prices
⦁ Take TensorFlow into production

▶Key Features
⦁ Exploit the features of Tensorflow to build and deploy machine learning models
⦁ Train neural networks to tackle real-world problems in Computer Vision and NLP
⦁ Handy techniques to write production-ready code for your Tensorflow models

▶Who This Book Is For
If you are a data scientist or a machine learning engineer with some knowledge of linear algebra, statistics, and machine learning, this book is for you. If you want to skip the theory and build production-ready machine learning models using Tensorflow without reading pages and pages of material, this book is for you. Some background in Python programming is assumed.

▶What this book covers
⦁ Chapter 1, Getting Started with TensorFlow, covers the main objects and concepts in TensorFlow. We introduce tensors, variables, and placeholders. We also show how to work with matrices and various mathematical operations in TensorFlow. At the end of the chapter, we show how to access the data sources used in the rest of the book.

⦁ Chapter 2, The TensorFlow Way, establishes how to connect all the algorithm components from Chapter 1, Getting Started with TensorFlow, into a computational graph in multiple ways to create a simple classifier. Along the way, we cover computational graphs, loss functions, back propagation, and training with data.

⦁ Chapter 3, Linear Regression, focuses on using TensorFlow for exploring various linear regression techniques, such as deming, lasso and ridge, elastic net, and logistic regression. We show how to implement each in a TensorFlow computational graph.

⦁ Chapter 4, Support Vector Machines, introduces support vector machines (SVMs) and shows how to use TensorFlow to implement linear SVMs, non-linear SVMs, and multi-class SVMs.

⦁ Chapter 5, Nearest-Neighbor Methods, shows how to implement nearest neighbor techniques using numerical metrics, textual metrics, and scaled distance functions. We use nearest neighbor techniques to perform record matching of addresses and to classify hand-written digits from the MNIST database.

⦁ Chapter 6, Neural Networks, covers how to implement neural networks in TensorFlow, starting with the operational gates and activation function concepts. We then show a shallow neural network and how to build up various different types of layers. We end the chapter by teaching a TensorFlow neural network to play tic tac toe.

⦁ Chapter 7, Natural Language Processing, illustrates various text processing techniques with TensorFlow. We show how to implement the bag-of-words technique and TF-IDF (text frequency - inverse document frequency) for text. We then introduce text representations (CBOW, continuous bag-of-words, and skip-gram) and use these techniques for Word2Vec and Doc2Vec to make real-world predictions such as predicting whether a text message is spam.

⦁ Chapter 8, Convolutional Neural Networks, expands our knowledge of neural networks by illustrating how to use images with convolutional layers (and other image layers and functions). We show how to build a shortened CNN for MNIST digit recognition and extend it to color images in the CIFAR-10 task. We also illustrate how to extend prior trained image recognition models for custom tasks. We end the chapter by explaining and demonstrating the stylenet/neural style and deep-dream algorithms in TensorFlow.

⦁ Chapter 9, Recurrent Neural Networks, explains how to implement recurrent neural networks in TensorFlow. We show how to do text-spam prediction, and expand the RNN model to perform text generation based on the works of Shakespeare. We also train a sequence-to-sequence model for German-English translation. We finish the chapter by showing the usage of Siamese RNNs for record matching on addresses.

⦁ Chapter 10, Taking TensorFlow to Production, gives tips and examples on moving TensorFlow to a production environment and how to take advantage of multiple processing devices (for example, GPUs) and setting up TensorFlow distributed on multiple machines. We end the chapter by showing an example of setting up an RNN model on TensorFlow serving an API.

⦁ Chapter 11, More with TensorFlow, demonstrates the versatility of TensorFlow by illustrating how to use the k-means and genetic algorithms, and how to solve a system of ordinary differential equations (ODEs). We also show the various uses of TensorBoard, and how to view computational graph metrics and charts.

작가 소개

⦁ Nick McClure
Nick McClure is currently a senior data scientist at PayScale, Inc. in Seattle, WA. Prior to this, he has worked at Zillow Group and Caesar's Entertainment Corporation. He got his degrees in Applied Mathematics from The University of Montana and the College of Saint Benedict and Saint John's University.

He has a passion for learning and advocating for analytics, machine learning, and artificial intelligence. Nick occasionally puts his thoughts and musings on his blog, https://fromdata.org, or through his Twitter account, @nfmcclure .

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전