본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Artificial Intelligence for Beginners 상세페이지

Hands-On Artificial Intelligence for Beginners

An introduction to AI concepts, algorithms, and their implementation

  • 관심 0
소장
전자책 정가
26,000원
판매가
26,000원
출간 정보
  • 2018.10.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 349 쪽
  • 18.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788992268
ECN
-
Hands-On Artificial Intelligence for Beginners

작품 정보

▶Book Description
Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world.

Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games.

By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications.

▶What You Will Learn
⦁ Use TensorFlow packages to create AI systems
⦁ Build feedforward, convolutional, and recurrent neural networks
⦁ Implement generative models for text generation
⦁ Build reinforcement learning algorithms to play games
⦁ Assemble RNNs, CNNs, and decoders to create an intelligent assistant
⦁ Utilize RNNs to predict stock market behavior
⦁ Create and scale training pipelines and deployment architectures for AI systems

▶Key Features
⦁ Enter the world of AI with the help of solid concepts and real-world use cases
⦁ Explore AI components to build real-world automated intelligence
⦁ Become well versed with machine learning and deep learning concepts

▶Who This Book Is For
This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.

▶What this book covers
⦁ Chapter 1, The History of AI, begins by discussing the mathematical basis of AI and how certain theorems evolved. Then, we'll look at the research done in the 1980s and 90s to improve ANNs, we'll look at the AI winter, and we'll finish off with how we arrived at where we are today.

⦁ Chapter 2, Machine Learning Basics, introduces the fundamentals of machine learning and AI. Here, we will cover essential probability theory, linear algebra, and other elements that will lay the groundwork for the future chapters.

⦁ Chapter 3, Platforms and Other Essentials, introduces the deep learning libraries of Keras and TensorFlow and moves onto an introduction of basic AWS terminology and concepts that are useful for deploying your networks in production. We'll also introduce CPUs and GPUs, as well as other forms of compute architecture that you should be familiar with when building deep learning solutions.

⦁ Chapter 4, Your First Artificial Neural Networks, explains how to build our first artificial neural network. Then, we will learn ability of the core elements of ANNs and construct a simple single layer network both in Keras and TensorFlow so that you understand how the two languages work. With this simple network, we will do a basic classification task, such as the MNIST OCR task.

⦁ Chapter 5, Convolutional Neural Networks, introduces the convolutional neural network and explains its inner workings. We'll touch upon the basic building blocks of convolutions, pooling layers, and other elements. Lastly, we'll construct a Convolutional Neural Network for image tagging.

⦁ Chapter 6, Recurrent Neural Networks, introduces one of the workhorses of deep learning and AI—the recurrent neural network. We'll first introduce the conceptual underpinnings of recurrent neural networks, with a specific focus on utilizing them for natural language processing tasks. We'll show how one can generate text utilizing you of these networks and see how they can be utilized for predictive financial models.

⦁ Chapter 7, Generative Models, covers generative models primarily through the lens of GANs, and we'll look at how we can accomplish each of the above tasks with GANs.

⦁ Chapter 8, Reinforcement Learning, introduces additional forms of neural networks. First, we'll take a look at autoencoders, which are unsupervised learning algorithms that help us recreate inputs when we don't have access to input data. Afterwards, we'll touch upon other forms of networks, such as the emerging geodesic neural networks.

⦁ Chapter 9, Deep Learning for Intelligent Assistant, focuses on utilizing our knowledge of various forms of neural networks from the previous section to make an intelligent assistant, along the lines of Amazon's Alexa or Apple's Siri. We'll learn about and utilize word embeddings, recurrent neural networks, and decoders.

⦁ Chapter 10, Deep Learning for Game Playing, explains how to construct game-playing algorithms with reinforcement learning. We'll look at several different forms of games, from simple Atari-style games to more advanced board games. We'll touch upon the methods that Google Brain utilized to build AlphaGo.

⦁ Chapter 11, Deep Learning for Finance, shows how to create an advanced market prediction system in TensorFlow utilizing RNNs.

⦁ Chapter 12, Deep Learning for Robotics, uses deep learning to teach a robot to move objects. We will first train the neural network in simulated environments and then move on to real mechanical parts with images acquired from a camera.

⦁ Chapter 13, Scale, Deploy and Maintain AI Application, introduces methods for creating and scaling training pipelines and deployment architectures for AI systems.

작가 소개

⦁ Patrick D. Smith
Patrick D. Smith is the Data Science Lead for Excella in Arlington, Virginia, where he founded the data science and machine learning team. Prior to Excella, Patrick was the lead instructor for the data science program at General Assembly in Washington, DC, as well as a data scientist with Booz Allen Hamilton's Strategic Innovations Group. He holds a bachelor's degree from The George Washington University in International Economics, and is currently a part-time masters student in software engineering at Harvard University.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 지식그래프 (이광배, 이채원)
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 객체지향의 사실과 오해 (조영호)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 실전! 스프링 부트 3 & 리액트로 시작하는 모던 웹 애플리케이션 개발 (주하 힌쿨라, 변영인)
  • 혼자 공부하는 네트워크 (강민철)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전