본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Learning Python for Forensics Second Edition 상세페이지

Learning Python for Forensics Second Edition

Leverage the power of Python in forensic investigations

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2019.01.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 471 쪽
  • 8.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789342765
ECN
-
Learning Python for Forensics Second Edition

작품 정보

▶Book Description
Digital forensics plays an integral role in solving complex cybercrimes and helping organizations make sense of cybersecurity incidents. This second edition of Learning Python for Forensics illustrates how Python can be used to support these digital investigations and permits the examiner to automate the parsing of forensic artifacts to spend more time examining actionable data.

The second edition of Learning Python for Forensics will illustrate how to develop Python scripts using an iterative design. Further, it demonstrates how to leverage the various built-in and community-sourced forensics scripts and libraries available for Python today. This book will help strengthen your analysis skills and efficiency as you creatively solve real-world problems through instruction-based tutorials.

By the end of this book, you will build a collection of Python scripts capable of investigating an array of forensic artifacts and master the skills of extracting metadata and parsing complex data structures into actionable reports. Most importantly, you will have developed a foundation upon which to build as you continue to learn Python and enhance your efficacy as an investigator.

▶What You Will Learn
⦁ Learn how to develop Python scripts to solve complex forensic problems
⦁ Build scripts using an iterative design
⦁ Design code to accommodate present and future hurdles
⦁ Leverage built-in and community-sourced libraries
⦁ Understand the best practices in forensic programming
⦁ Learn how to transform raw data into customized reports and visualizations
⦁ Create forensic frameworks to automate analysis of multiple forensic artifacts
⦁ Conduct effective and efficient investigations through programmatic processing

▶Key Features
⦁ Discover how to develop Python scripts for effective digital forensic analysis
⦁ Master the skills of parsing complex data structures with Python libraries
⦁ Solve forensic challenges through the development of practical Python scripts

▶Who This Book Is For
If you are a forensics student, hobbyist, or professional seeking to increase your understanding in forensics through the use of a programming language, then Learning Python for Forensics is for you.

You are not required to have previous experience in programming to learn and master the content within this book. This material, created by forensic professionals, was written with a unique perspective and understanding for examiners who wish to learn programming.

▶What this book covers
⦁ Chapter 1, Now for Something Completely Different, is an introduction to common Python objects, built-in functions, and tropes. We will also cover basic programming concepts.

⦁ Chapter 2, Python Fundamentals, is a continuation of the basics learned in the previous chapter and the development of our first forensic script.

⦁ Chapter 3, Parsing Text Files, discusses a basic setup API log parser to identify first use times for USB devices and introduce the iterative development cycle.

⦁ Chapter 4, Working with Serialized Data Structures, shows how serialized data structures such as JSON files can be used to store or retrieve data in Python. We will parse JSONformatted data from the Bitcoin blockchain containing transaction details.

⦁ Chapter 5, Databases in Python, shows how databases can be used to store and retrieve data via Python. We will use two different database modules to demonstrate different versions of a script that creates an active file listing with a database backend.

⦁ Chapter 6, Extracting Artifacts from Binary Files, is an introduction to the struct module, which will become every examiner's friend. We use the struct module to parse binary data into Python objects from a forensically-relevant source. We will parse the UserAssist key in the registry for user application execution artifacts.

⦁ Chapter 7, Fuzzy Hashing, explores how ssdeep compatible hashes are generated and how to use the pre-built ssdeep module to perform similarity analysis.

⦁ Chapter 8, The Media Age, helps us understand embedded metadata and parse them from forensic sources. In this chapter, we introduce and design an embedded metadata framework in Python.

⦁ Chapter 9, Uncovering Time, provides the first look at the development of the GUI with Python to decode commonly encountered timestamps. This is our introduction to GUI and Python class development.

⦁ Chapter 10, Rapidly Triage Systems, shows how you can use Python to collect volatile and other useful information from popular operating systems. This includes an introduction to a very powerful Windows-specific Python API.

⦁ Chapter 11, Parsing Outlook PST Containers, demonstrates how to read, index, and report on the contents of an Outlook PST container.

⦁ Chapter 12, Recovering Deleted Database Records, introduces SQLite Write-Ahead Logs and how to extract data, including deleted data, from these files.

⦁ Chapter 13, Coming Full Circle, is an aggregation of scripts written in previous chapters into a forensic framework. We explore concepts and methods for designing these larger projects.

작가 소개

⦁ Preston Miller
Preston Miller is a consultant at an internationally recognized firm that specializes in cyber investigations. Preston holds an undergraduate degree from Vassar College and a masters degree, in Digital Forensics, from Marshall University where he was the recipient of the J. Edgar Hoover Scientific Scholarship for academic excellence. While in graduate school, Preston taught classes on Python and Open Source Forensics. Preston has previously been published through Syngress for his research on Bitcoin.

Preston is experienced in conducting traditional Digital Forensic investigations, but specializes in Physical Forensics. Physical Forensics is a subset of Digital Forensics, which involves black box scenarios where data must be acquired from a device by non-traditional means. In his free time, Preston contributes to multiple Python-based open source projects.

Preston would like to thank his wife, Stephanie, for her unwavering encouragement and love. He would also like to thank his family and friends for their support. Preston owes many thanks to Dr. Terry Fenger, Chris Vance, and Robert Boggs for helping him grow his understanding of the field and inspiring him to learn outside of the classroom.

⦁ Chapin Bryce
Chapin Bryce is a consultant at a global firm that is a leader in digital forensics and incident response investigations. After graduating from Champlain College with a bachelor's degree in computer and digital forensics, Chapin dove into the field of digital forensics and incident response joining the GIAC advisory board and earning four GIAC certifications: GCIH, GCFE, GCFA, and GNFA. As a member of multiple ongoing research and development projects, he has authored several books and articles in professional and academic publications, including Python Digital Forensics Cookbook (Forensic 4:Cast Digital Forensics Book of the Year, 2018), Learning Python for Forensics, First Edition, and Digital Forensic Magazine.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 웹 접근성 바이블 (이하라 리키야, 고바야시 다이스케)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 혼자 공부하는 네트워크 (강민철)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 멀티패러다임 프로그래밍 (유인동)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 기획자로 산다는 것 (카카)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전