본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Unsupervised Learning with Python 상세페이지

Hands-On Unsupervised Learning with Python

Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2019.03.29 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 375 쪽
  • 42.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789349276
UCI
-
Hands-On Unsupervised Learning with Python

작품 정보

▶Book Description
Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python.

This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images.

By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.

▶What You Will Learn
⦁ Use cluster algorithms to identify and optimize natural groups of data
⦁ Explore advanced non-linear and hierarchical clustering in action
⦁ Soft label assignments for fuzzy c-means and Gaussian mixture models
⦁ Detect anomalies through density estimation
⦁ Perform principal component analysis using neural network models
⦁ Create unsupervised models using GANs

▶Key Features
⦁ Explore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and more
⦁ Build your own neural network models using modern Python libraries
⦁ Practical examples show you how to implement different machine learning and deep learning techniques

▶Who This Book Is For
This book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.

▶What this book covers
⦁ Chapter 1, Getting Started with Unsupervised Learning, offers an introduction to machine learning and data science from a very pragmatic perspective. The main concepts are discussed and a few simple examples are shown, focusing attention particularly on unsupervised problem structures.

⦁ Chapter 2, Clustering Fundamentals, begins our exploration of clustering algorithms. The most common methods and evaluation metrics are analyzed, together with concrete examples that show how to tune up the hyperparameters and assess performance from different viewpoints.

⦁ Chapter 3, Advanced Clustering, discusses some more complex algorithms. Many of the problems analyzed in Chapter 2, Clustering Fundamentals, are re-evaluated using more powerful and flexible methods that can be easily employed whenever the performances of basic algorithms don't meet requirements.

⦁ Chapter 4, Hierarchical Clustering in Action, is fully dedicated to a family of algorithms that can calculate a complete clustering hierarchy according to specific criteria. The most common strategies for this are analyzed, together with specific performance measures and algorithmic variants that can increase the effectiveness of the methods.

⦁ Chapter 5, Soft Clustering and Gaussian Mixture Models, is focused on a few famous softclustering algorithms, with a particular emphasis on Gaussian mixtures, which allow the defining of generative models under quite reasonable assumptions.

⦁ Chapter 6, Anomaly Detection, discusses a particular application of unsupervised learning: novelty and outlier detection. The goal is to analyze some common methods that can be effectively employed in order to understand whether a new sample can be considered as valid, or an anomalous one that requires particular attention.

⦁ Chapter 7, Dimensionality Reduction and Component Analysis, covers the most common and powerful methods for dimensionality reduction, component analysis, and dictionary learning. The examples show how it's possible to carry out such operations efficiently in different specific scenarios.

⦁ Chapter 8, Unsupervised Neural Network Models, discusses some very important unsupervised neural models. In particular, focus is directed both to networks that can learn the structure of a generic data generating process, and to performing dimensionality reduction.

⦁ Chapter 9, Generative Adversarial Networks and SOMs, continues the analysis of some deep neural networks that can learn the structure of data generating processes and output new samples drawn from these processes. Moreover, a special kind of network (SOM) is discussed and some practical examples are shown.

작가 소개

⦁ Giuseppe Bonaccorso
Giuseppe Bonaccorso is an experienced manager in the fields of AI, data science, and machine learning. He has been involved in solution design, management, and delivery in different business contexts. He got his M.Sc.Eng in electronics in 2005 from the University of Catania, Italy, and continued his studies at the University of Rome Tor Vergata, Italy, and the University of Essex, UK. His main interests include machine/deep learning, reinforcement learning, big data, bio-inspired adaptive systems, neuroscience, and natural language processing.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 그림으로 이해하는 챗GPT 구조와 기술 (나카타니 슈요, 박광수)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 스프링 부트 3와 스프링 클라우드를 활용한 마이크로서비스 구축 (마그누스 라르손, 트랜스메이트)
  • PyTorch로 배우는 딥러닝과 생성형 AI (박유성)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • AI 에이전트 생태계 (이주환)
  • AWS 잘하는 개발자 되기 (김재욱)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • AI 프로덕트 기획과 운영 (마릴리 니카, 오성근)
  • n8n 첫걸음 업무 자동화 부터 AI 챗봇 까지 (문세환)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 개정판 | 린 스타트업 (애시 모리아, 권혜정)
  • 객체지향의 사실과 오해 (조영호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전