본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Machine Learning in Java Second Edition 상세페이지

Machine Learning in Java Second Edition

Helpful techniques to design, build, and deploy powerful machine learning applications in Java

  • 관심 0
소장
전자책 정가
17,000원
판매가
17,000원
출간 정보
  • 2018.11.28 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 290 쪽
  • 10.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788473897
ECN
-
Machine Learning in Java Second Edition

작품 정보

▶Book Description
As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of big data and Data Science. The main challenge is how to transform data into actionable knowledge.

Machine Learning in Java will provide you with the techniques and tools you need. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. The code in this book works for JDK 8 and above, the code is tested on JDK 11.

Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will have explored related web resources and technologies that will help you take your learning to the next level.

By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data.

▶What You Will Learn
⦁ Discover key Java machine learning libraries
⦁ Implement concepts such as classification, regression, and clustering
⦁ Develop a customer retention strategy by predicting likely churn candidates
⦁ Build a scalable recommendation engine with Apache Mahout
⦁ Apply machine learning to fraud, anomaly, and outlier detection
⦁ Experiment with deep learning concepts and algorithms
⦁ Write your own activity recognition model for eHealth applications

▶Key Features
⦁ Solve predictive modeling problems using the most popular machine learning Java libraries
⦁ Explore data processing, machine learning, and NLP concepts using JavaML, WEKA, MALLET libraries
⦁ Practical examples, tips, and tricks to help you understand applied machine learning in Java

▶Who This Book Is For
If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications with ease. You should be familiar with Java programming and some basic data mining concepts to make the most of this book, but no prior experience with machine learning is required.

▶What this book covers
⦁ Chapter 1, Applied Machine Learning Quick Start, introduces the field of natural language processing (NLP). The tools and basic techniques that support NLP are discussed. The use of models, their validation, and their use from a conceptual perspective are presented.

⦁ Chapter 2, Java Libraries and Platforms for Machine Learning, covers the purpose and uses of tokenizers. Different tokenization processes will be explored, followed by how they can be used to solve specific problems.

⦁ Chapter 3, Basic Algorithms – Classification, Regression, and Clustering, covers the problems associated with sentence detection. Correct detection of the end of sentences is important for many reasons. We will examine different approaches to this problem using a variety of examples.

⦁ Chapter 4, Customer Relationship Prediction with Ensembles, covers the process and problems associated with name recognition. Finding names, locations, and various things in a document is an important step in NLP. The techniques available are identified and demonstrated.

⦁ Chapter 5, Affinity Analysis, covers the process of determining the part of speech that is useful in determining the importance of words and their relationships in a document. It is a process that can enhance the effectiveness of other NLP tasks.

⦁ Chapter 6, Recommendation Engine with Apache Mahout, covers traditional features that do not apply to text documents. In this chapter, we'll learn how text documents can be presented.

⦁ Chapter 7, Fraud and Anomaly Detection, covers information retrieval, which entails finding documents in an unstructured format, such as text that satisfies a query.

⦁ Chapter 8, Image Recognition with Deeplearning4J, covers the issues surrounding how documents and text can be classified. Once we have isolated the parts of text, we can begin the process of analyzing it for information. One of these processes involves classifying and clustering information.

⦁ Chapter 9, Activity Recognition with Mobile Phone Sensors, demonstrates how to discover topics in a set of documents.

⦁ Chapter 10, Text Mining with Mallet – Topic Modeling and Spam Detection, covers the use of parsers and chunkers to solve text problems that are then examined. This important process, which normally results in a parse tree, provides insights into the structure and meaning of documents.

⦁ Chapter 11, What is Next?, brings together many of the topics in previous chapters to address other more sophisticated problems. The use and construction of a pipeline is discussed. The use of open source tools to support these operations is presented.

작가 소개

⦁ AshishSingh Bhatia
AshishSingh Bhatia is a reader and learner at his core. He has more than 11 years of rich experience in different IT sectors, encompassing training, development, and management. He has worked in many domains, such as software development, ERP, banking, and training. He is passionate about Python and Java and has recently been exploring R. He is mostly involved in web and mobile development in various capacities. He likes to explore new technologies and share his views and thoughts through various online media and magazines. He believes in sharing his experience with the new generation and also takes part in training and teaching.

⦁ Bostjan Kaluza
Bostjan Kaluza is a researcher in artificial intelligence and machine learning with extensive experience in Java and Python. Bostjan is the chief data scientist at Evolven, a leading IT operations analytics company. He works with machine learning, predictive analytics, pattern mining, and anomaly detection to turn data into relevant information. Prior to Evolven, Bostjan served as a senior researcher in the department of intelligent systems at the Jozef Stefan Institute and led research projects involving pattern and anomaly detection, ubiquitous computing, and multi-agent systems. In 2013, Bostjan published his first book, Instant Weka How-To, published by Packt Publishing, exploring how to leverage machine learning using Weka.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 실무로 통하는 웹 API (조 아타디, 김태곤)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • LLM 인 프로덕션 (크리스토퍼 브루소, 매슈 샤프)
  • 실전! 스프링 부트 3 & 리액트로 시작하는 모던 웹 애플리케이션 개발 (주하 힌쿨라, 변영인)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 객체지향 시스템 디자인 원칙 (마우리시오 아니체, 오현석)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 개정판 | Tkinter를 사용한 파이썬 GUI 프로그래밍 (앨런 무어, 이태상)
  • 실무 건축 인테리어를 위한 블렌더 3D (최인재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전