본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Python Machine Learning By Example Second Edition 상세페이지

Python Machine Learning By Example Second Edition

Implement machine learning algorithms and techniques to build intelligent systems

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.02.28 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 370 쪽
  • 19.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789617559
UCI
-
Python Machine Learning By Example Second Edition

작품 정보

▶What You Will Learn
⦁ Understand the important concepts in machine learning and data science
⦁ Use Python to explore the world of data mining and analytics
⦁ Scale up model training using varied data complexities with Apache Spark
⦁ Delve deep into text and NLP using Python libraries such NLTK and gensim
⦁ Select and build an ML model and evaluate and optimize its performance
⦁ Implement ML algorithms from scratch in Python, TensorFlow, and scikit-learn

▶Key Features
⦁ Exploit the power of Python to explore the world of data mining and data analytics
⦁ Discover machine learning algorithms to solve complex challenges faced by data scientists today
⦁ Use Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projects

▶Who This Book Is For
If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.

▶What this book covers
⦁ Chapter 1, Getting Started with Machine Learning and Python, will be the starting point for readers who are looking forward to entering the field of machine learning with Python. It will introduce the essential concepts of machine learning, which we will dig deeper into throughout the rest of the book. In addition, it will discuss the basics of Python for machine learning and explain how to set it up properly for the upcoming examples and projects.

⦁ Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Techniques, will start developing the first project of the book, exploring and mining the 20 newsgroups dataset, which will be split into two parts—Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Techniques, and Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms. In this chapter, readers will get familiar with NLP and various NLP libraries that will be used for this project. We will explain several important NLP techniques implementing them in NLTK. We will also cover the dimension reduction technique, especially t-SNE and its use in text data visualization.

⦁ Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms, will continue our newsgroups project after exploring the 20 newsgroups dataset. In this chapter, readers will learn about unsupervised learning and clustering algorithms, as well as some advanced NLP techniques, such as LDA and word embedding. We will cluster the newsgroups data using the k-means algorithm, and detect topics using NMF and LDA.

⦁ Chapter 4, Detecting Spam Emails with Naive Bayes, will start our supervised learning journey. In this chapter, we focus on classification with Naïve Bayes, and we'll look at an indepth implementation. We will also cover other important machine learning concepts, such as classification performance evaluation, model selection and tuning, and cross-validation. Examples including spam email detection will be demonstrated.

⦁ Chapter 5, Classifying Newsgroup Topics with a Support Vector Machine, will reuse the newsgroups dataset we used in Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Techniques, and Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms. We will cover multiclass classification, as well as SVM and how they are applied in topic classification. Other important concepts, such as kernel machines, overfitting, and regularization, will be discussed as well.

⦁ Chapter 6, Predicting Online Ad Click-Through with Tree-Based Algorithms, will introduce and explain decision trees and random forests in depth throughout the course of solving the advertising click-through rate problem. Important concepts of tree-based models such as ensemble, feature importance, and feature selection will also be covered.

⦁ Chapter 7, Predicting Online Ads Click-Through with Logistic Regression, will introduce and explain logistic regression classifiers on the same project from the previous chapters. We will also cover other concepts, such as categorical variable encoding, L1 and L2 regularization, feature selection, online learning and stochastic gradient descent, and, of course, how to work with large datasets.

⦁ Chapter 8, Scaling Up Prediction to Terabyte Click Logs, covers online advertising clickthrough prediction, where we have millions of labeled samples in a typical large-scale machine learning problem. In this chapter, we will explore a more scalable solution than the previous chapters, utilizing powerful parallel computing tools such as Apache Hadoop and Spark. We will cover the essential concepts of Spark, such installation, RDD, and core programming, as well as its machine learning components. We will work with the entire dataset of millions of samples, explore the data, build classification models, perform feature engineering, and performance evaluation using Spark, which scales up the computation.

⦁ Chapter 9, Stock Price Prediction with Regression Algorithms, introduces the aim of this project, which is to analyze and predict stock market prices using the Yahoo/Google Finance data, and maybe additional data. We will start the chapter by covering the challenges in finance and looking at a brief explanation of the related concepts. The next step is to obtain and explore the dataset and start feature engineering after exploratory data analysis. The core section, looking at regression and regression algorithms, linear regression, decision tree regression, SVR, and neural networks, will follow. Readers will also practice solving regression problems using scikit-learn and the TensorFlow API.

Chapter 10, Machine Learning Best Practices, covers best practices in machine learning. After covering multiple projects in this book, you will have gathered a broad picture of the machine learning ecosystem using Python. However, there will be issues once you start working on projects in the real world. This chapter aims to foolproof your learning and get you ready for production by providing 21 best practices throughout the entire machine learning workflow.

작가 소개

⦁Yuxi (Hayden) Liu
Yuxi (Hayden) Liu is an author of a series of machine learning books and an education enthusiast. His first book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon in 2017 and 2018. His other books include R Deep Learning Projects, Hands-On Deep Learning Architectures with Python, and second edition of Python Machine Learning by Example.

He is an experienced machine learning scientist focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and applied his ML expertise in computational advertising, where he developed ad bidding and targeting algorithms based on Reinforcement Learning techniques. He published five first-authored IEEE transaction and conference papers during his master's research in University of Toronto.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • AI 에이전트 생태계 (이주환)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • AI 프로덕트 기획과 운영 (마릴리 니카, 오성근)
  • 안티프래질 프런트엔드 (김상철)
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! -모델링편- (나츠모리 카츠, 김모세)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 개발자를 위한 생성형 AI 활용 가이드 (핫토리 유우키, 하승민)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 할루시네이션을 줄여주는 프롬프트 엔지니어링 (한성민 )
  • 블렌더로 애니 그림체 캐릭터를 만들어보자! 카툰 렌더링편 (나츠모리 카츠, 김모세)
  • 실무로 통하는 웹 API (조 아타디, 김태곤)
  • 데이터 중심 애플리케이션 설계 (마틴 클레프만, 정재부)
  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 개정판 | Do it! 점프 투 파이썬 (박응용)
  • 테디노트의 랭체인을 활용한 RAG 비법노트_기본편 (이경록(테디노트))
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전