본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning Architectures with Python 상세페이지

Hands-On Deep Learning Architectures with Python

Create deep neural networks to solve computational problems using TensorFlow and Keras

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 303 쪽
  • 22.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788990509
UCI
-
Hands-On Deep Learning Architectures with Python

작품 정보

▶What You Will Learn
- Implement CNNs, RNNs, and other commonly used architectures with Python
- Explore architectures such as VGGNet, AlexNet, and GoogLeNet
- Build deep learning architectures for AI applications such as face and image recognition, fraud detection, and many more
- Understand the architectures and applications of Boltzmann machines and autoencoders with concrete examples
- Master artificial intelligence and neural network concepts and apply them to your architecture
- Understand deep learning architectures for mobile and embedded systems

▶Key Features
- Explore advanced deep learning architectures using various datasets and frameworks
- Implement deep architectures for neural network models such as CNN, RNN, GAN, and many more
- Discover design patterns and different challenges for various deep learning architectures

▶Who This Book Is For
If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

▶What this book covers
- Chapter 1, Getting Started with Deep Learning, covers the evolution of intelligence in machines and artificial intelligence and, eventually, deep learning. We'll then look at some applications of deep learning and set up our environment for coding our way through deep learning models. Completing this chapter, you will learn the following things.

- Chapter 2, Deep Feedforward Networks, covers the evolution history of deep feedforward networks and their architecture. We will also demonstrate how to bring up and preprocess data for training a deep learning network.

- Chapter 3, Restricted Boltzmann Machines and Autoencoders, explains the algorithm behind the scenes, called restricted Boltzmann machines (RBMs) and their evolutionary path. We will then dig deeper into the logic behind them and implement RBMs in TensorFlow. We will also apply them to build a movie recommender. We'll then learn about autoencoders and briefly look at their evolutionary path. We will also illustrate a variety of autoencoders, categorized by their architectures or forms of regularization.

- Chapter 4, CNN Architecture, covers an important class of deep learning network for images, called convolutional neural networks (CNNs). We will also discuss the benefits of CNNs over deep feedforward networks. We will then learn more about some famous image classification CNNs and then build our first CNN image classifier on the CIFAR-10 dataset. Then, we'll move on to object detection with CNNs and the TensorFlow detection model, zoo.

- Chapter 5, Mobile Neural Networks and CNNs, discusses the need for mobile neural networks for doing CNN work in a real-time application. We will also talk about the two benchmark MobileNet architectures introduced by Google—MobileNet and MobileNetV2. Later, we'll discuss the successful combination of MobileNet with object detection networks such as SSD to achieve object detection on mobile devices.

- Chapter 6, Recurrent Neural Networks, explains one of the most important deep learning models, recurrent neural networks (RNNs), its architecture, and the evolutionary path of RNNs. Later, we'll will discuss a variety of architectures categorized by the recurrent layer, including vanilla RNNs, LSTM, GRU, and bidirectional RNNs, and apply the vanilla architecture to write our own War and Peace (a bit nonsensical though). We'll also introduce the bidirectional architecture that allows the model to preserve information from both past and future contexts of the sequence.

- Chapter 7, Generative Adversarial Networks, explains one of the most interesting deep learning models, generative adversarial networks (GANs), and its evolutionary path. We will also illustrate a variety of GAN architectures with an example of image generation. We will also explore four GAN architectures, including vanilla GANs, deep convolutional GANs, conditional GANs, and information-maximizing GANs.

- Chapter 8, New Trends in Deep Learning, talks about a few deep learning ideas that we have found impactful this year and more prominent in the future. We'll also learn that Bayesian deep learning combines the merits of both Bayesian learning and deep learning.

작가 소개

▶About the Author
- Yuxi (Hayden) Liu
Yuxi (Hayden) Liu is an author of a series of machine learning books and an education enthusiast. His first book, the first edition of Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018 and his other book R Deep Learning Projects, both published by Packt Publishing.

He is an experienced data scientist who is focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his machine learning expertise to computational advertising, recommendations, and network anomaly detection. He published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto.

- Saransh Mehta
Saransh Mehta has cross-domain experience of working with texts, images, and audio using deep learning. He has been building artificial, intelligence-based solutions, including a generative chatbot, an attendee-matching recommendation system, and audio keyword recognition systems for multiple start-ups. He is very familiar with the Python language, and has extensive knowledge of deep learning libraries such as TensorFlow and Keras. He has been in the top 10% of entrants to deep learning challenges hosted by Microsoft and Kaggle.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 0과 1 사이 (가와타 아키라, 고이케 유키)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 실무로 통하는 LLM 애플리케이션 설계 (수하스 파이, 박조은)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 한 걸음 앞선 개발자가 지금 꼭 알아야 할 클로드 코드 (조훈, 정찬훈)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • SQLite, MCP, 바이브 코딩을 활용한 데이터 분석과 업무 자동화 (박찬규, 윤가희)
  • 실전! 프로젝트로 배우는 딥러닝 컴퓨터비전 (김혜진, 왕진영)
  • 요즘 바이브 코딩 커서 AI 30가지 프로그램 만들기 (박현규)
  • 소문난 명강의 : 크리핵티브의 한 권으로 끝내는 웹 해킹 바이블 (하동민)
  • 데이터 중심 애플리케이션 설계 (마틴 클레프만, 정재부)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • FastAPI로 배우는 백엔드 프로그래밍 with 클린 아키텍처 (한용재)
  • 처음 시작하는 FastAPI (빌 루바노빅, 한용재)
  • 파이썬 크래시 코스 (에릭 마테스, 한선용)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전