본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

PyTorch Deep Learning Hands-On 상세페이지

PyTorch Deep Learning Hands-On

Apply modern AI techniques with CNNs, RNNs, GANs, reinforcement learning, and more

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2019.04.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 251 쪽
  • 4.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788833431
ECN
-
PyTorch Deep Learning Hands-On

작품 정보

▶Book Description
PyTorch is a new, lightweight, and Python-first tool for deep learning. Built by Facebook to offer flexibility and speed, it has quickly become the preferred tool for deep learning experts. PyTorch helps you release deep learning models faster than ever before.

PyTorch Deep Learning Hands-On offers a rapid orientation to PyTorch. Over 8 chapters, it shows how to implement every major deep learning architecture. Starting with simple neural networks, it covers PyTorch for computer vision (CNN), natural language processing (RNN), GANs, and reinforcement learning. It explains how the PyTorch framework supports deep learning workflows, migrates models built in Python to highly efficient TorchScript, and deploys to production using the most sophisticated available tools.

Each chapter focuses on a different area of deep learning. Chapters start with a refresher on the core principles, before sharing the code you need to implement them in PyTorch.

If you want to switch your deep learning work to PyTorch, this book is for you.

▶What You Will Learn(Use PyTorch to build)
- Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and more
- Convolutional Neural Networks – create advanced computer vision systems
- Recurrent Neural Networks – work with sequential data such as natural language and audio
- Generative Adversarial Networks – create new content with models including SimpleGAN and CycleGAN
- Reinforcement Learning – develop systems that can solve complex problems such as driving or game playing
- Deep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packages
- Production-ready models – package your models for high-performance production environments

▶Key Features
- Quick start guide to PyTorch internals, principles, and projects
- Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more
- Build deep learning workflows and take deep learning models from prototyping to production

▶Who This Book Is For
Machine learning professionals and enthusiasts who know Python and want to build efficient and powerful deep learning systems in PyTorch. Ideal for anyone looking for a rapid acceleration into PyTorch projects.

▶What this book covers
- Chapter 1, Deep Learning Walkthrough and PyTorch Introduction, is an introduction to the PyTorch way of doing deep learning and to the basic APIs of PyTorch. It starts by showing the history of PyTorch and why PyTorch should be the go-to framework for deep learning development. It also covers an introduction of the different deep learning approaches that we will be covering in the upcoming chapters.

- Chapter 2, A Simple Neural Network, helps you build your first simple neural network and shows how we can connect bits and pieces such as neural networks, optimizers, and parameter updates to build a novice deep learning model. It also covers how PyTorch does backpropagation, the key behind all state-of-the-art deep learning algorithms.

- Chapter 3, Deep Learning Workflow, goes deeper into the deep learning workflow implementation and the PyTorch ecosystem that helps build the workflow. This is probably the most crucial chapter if you are planning to set up a deep learning team or a pipeline for an upcoming project. In this chapter, we'll go through the different stages of a deep learning pipeline and see how the PyTorch community has advanced in each stage in the workflow iteratively by making appropriate tools.

- Chapter 4, Computer Vision, being the most successful result of deep learning so far, talks about the key ideas behind that success and runs through the most widely used vision algorithm – the convolutional neural network (CNN). We'll implement a CNN step by step to understand the working principles, and then use a predefined CNN from PyTorch's nn package. This chapter helps you make a simple CNN and an advanced CNN-based vision algorithm called semantic segmentation.

- Chapter 5, Sequential Data Processing, looks at the recurrent neural network, which is currently the most successful sequential data processing algorithm. The chapter introduces you to the major RNN components, such as the long short-term memory (LSTM) network and gated recurrent units (GRUs). Then we'll go through algorithmic changes in RNN implementation, such as bidirectional RNNs, and increasing the number of layers, before we explore recursive neural networks. To understand recursive networks, we'll use the renowned example, from the Stanford NLP group, the stack-augmented parser-interpreter neural network (SPINN), and implement that in PyTorch.

- Chapter 6, Generative Networks, talks about the history of generative networks in brief and then explains the different kinds of generative networks. Among those different categories, this chapter introduces us to autoregressive models and GANs. We'll work through the implementation details of PixelCNN and WaveNet as part of autoregressive models, and then look at GANs in detail.

- Chapter 7, Reinforcement Learning, introduces the concept of reinforcement learning, which is not really a subcategory of deep learning. We'll first take a look at defining problem statements. Then we'll explore the concept of cumulative rewards. We'll explore Markov decision processes and the Bellman equation, and then move to deep Q-learning. We'll also see an introduction to Gym, the toolkit developed by OpenAI for developing and experimenting with reinforcement learning algorithms.

- Chapter 8, PyTorch to Production, looks at the difficulties people face, even the deep learning experts, during the deployment of a deep learning model to production. We'll explore different options for production deployment, including using a Flask wrapper around PyTorch as well as using RedisAI, which is a highly optimized runtime for deploying models in multicluster environments and can handle millions of requests per second.

작가 소개

▶About the Author
- Sherin Thomas
Sherin Thomas started his career as an information security expert and shifted his focus to deep learning-based security systems. He has helped several companies across the globe to set up their AI pipelines and worked recently for CoWrks, a fast-growing start-up based out of Bengaluru. Sherin is working on several open source projects including PyTorch, RedisAI, and many more, and is leading the development of TuringNetwork.ai. Currently, he is focusing on building the deep learning infrastructure for [tensor]werk, an Orobix spin-off company.

- Sudhanshu Passi
Sudhanshu Passi is a technologist employed at CoWrks. Among other things, he has been the driving force behind everything related to machine learning at CoWrks. His expertise in simplifying complex concepts makes his work an ideal read for beginners and experts alike. This can be verified by his many blogs and this debut book publication. In his spare time, he can be found at his local swimming pool computing gradient descent underwater.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 요즘 우아한 AI 개발 (우아한형제들)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 멀티패러다임 프로그래밍 (유인동)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 시스템 설계 면접 완벽 가이드 (지용 탄, 나정호)
  • npm Deep Dive (전유정, 김용찬)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 파이토치와 유니티 ML-Agents로 배우는 강화학습 [응용편] (민규식, 이현호)
  • 이것이 스프링 부트다 with 자바 (김희선)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 컴파일러 (김상욱)
  • 머신러닝 수학 바이블 (Marc Peter Deise, A. Aldo Faisal)
  • 파이썬으로 살펴보는 아키텍처 패턴 (밥 그레고리, 해리 퍼시벌)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전