본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Computer Vision with TensorFlow 2 상세페이지

Hands-On Computer Vision with TensorFlow 2

Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras

  • 관심 0
소장
전자책 정가
15,000원
판매가
15,000원
출간 정보
  • 2019.05.30 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 363 쪽
  • 20.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781788839266
UCI
-
Hands-On Computer Vision with TensorFlow 2

작품 정보

▶Book Description
Computer vision solutions are becoming increasingly common, making their way in fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks.

Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface, and move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) to create and edit images, and LSTMs to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts.

By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0

▶What You Will Learn
- Create your own neural networks from scratch
- Classify images with modern architectures including Inception and ResNet
- Detect and segment objects in images with YOLO, Mask R-CNN, and U-Net
- Tackle problems in developing self-driving cars and facial emotion recognition systems
- Boost your application’s performance with transfer learning, GANs, and domain adaptation
- Use recurrent neural networks for video analysis
- Optimize and deploy your networks on mobile devices and in the browser

▶Key Features
- Discover how to build, train, and serve your own deep neural networks with TensorFlow 2 and Keras
- Apply modern solutions to a wide range of applications such as object detection and video analysis
- Learn how to run your models on mobile devices and webpages and improve their performance

▶Who This Book Is For
If you’re new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you’re an expert curious about the new TensorFlow 2 features, you’ll find this book useful.

While some theoretical explanations require knowledge in algebra and calculus, the book covers concrete examples for learners focused on practical applications such as visual recognition for self-driving cars and smartphone apps.

▶What this book covers
- Chapter 1, Computer Vision and Neural Networks, introduces you to computer vision and deep learning, providing some theoretical background and teaching you how to implement and train a neural network for visual recognition from scratch.

- Chapter 2, TensorFlow Basics and Training a Model, goes through TensorFlow 2 concepts related to computer vision, as well as some more advanced notions. It introduces Keras—now a submodule of TensorFlow—and describes the training of a simple recognition method implemented with these frameworks.

- Chapter 3, Modern Neural Networks, presents CNNs and explains how they have revolutionized computer vision. This chapter also introduces regularization tools and modern optimization algorithms that can be used to train more robust recognition systems.

- Chapter 4, Influential Classification Tools, provides theoretical details and practical code to expertly apply state-of-the-art solutions—such as Inception and ResNet—to the classification of images. This chapter also explains what makes transfer learning a key concept in machine learning, and how it can be performed with TensorFlow 2.

- Chapter 5, Object Detection Models, covers the architecture of two methods to detect specific objects in images—You Only Look Once, known for its speed, and Faster R-CNN, known for its accuracy.

- Chapter 6, Enhancing and Segmenting Images, introduces autoencoders and how networks such as U-Net and FCN can be applied to image denoising, semantic segmentation, and more.

- Chapter 7, Training on Complex and Scarce Datasets, focuses on solutions to efficiently collect and preprocess datasets for your deep learning applications. TensorFlow tools that build optimized data pipelines are presented, as well as various solutions to compensate for data scarcity (image rendering, domain adaptation, and generative networks such as VAEs and GANs).

- Chapter 8, Video and Recurrent Neural Networks, covers recurrent neural networks, presenting the more advanced version known as the long short-term memory architecture. It provides practical code to apply LSTMs to action recognition in video.

- Chapter 9, Optimizing Models and Deploying on Mobile Devices, details model optimization in terms of speed, disk space, and computational performance. It goes through the deployment of TensorFlow solutions on mobile devices and in the browser, using a practical example.

- Appendix, Migrating from TensorFlow 1 to TensorFlow 2, provides some information about TensorFlow 1, highlighting key changes introduced in TensorFlow 2. A guide to migrate older projects to the latest version is also included. Finally, per-chapter references are listed for those who want to dive deeper.

작가 소개

▶About the Author
- Benjamin Planche
Benjamin Planche is a passionate PhD student at the University of Passau and Siemens Corporate Technology. He has been working in various research labs around the world (LIRIS in France, Mitsubishi Electric in Japan, and Siemens in Germany) in the fields of computer vision and deep learning for more than five years. Benjamin has a double master's degree with first-class honors from INSA-Lyon, France, and the University of Passau, Germany.

His research efforts are focused on developing smarter visual systems with less data, targeting industrial applications. Benjamin also shares his knowledge and experience on online platforms, such as StackOverflow, or applies this knowledge to the creation of aesthetic demos.

- Eliot Andres
Eliot Andres is a freelance deep learning and computer vision engineer. He has more than 3 years' experience in the field, applying his skills to a variety of industries, such as banking, health, social media, and video streaming. Eliot has a double master's degree from École des Ponts and Télécom, Paris.

His focus is industrialization: delivering value by applying new technologies to business problems. Eliot keeps his knowledge up to date by publishing articles on his blog and by building prototypes using the latest technologies.

리뷰

3.0

구매자 별점
1명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
  • 전반적으로 다 설명은 있는데, 소스 쪽에 오타가 좀 많음 그리고 번역서가 있긴한데, 번역한 넘들 잘못이지만, 제목이 달라서 둘다 봤는데, 번역서가 더 개판이라서 (소스만 보면 원판 오타 + 번역 오타) 번역서만 보고 따라하기가 힘듬 원서(이거)나 아님 원서 제공 소스 같이 봐야 함

    cos***
    2021.03.10
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • AI 에이전트 엔지니어링 (마이클 알바다, 강민혁)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 요즘 당근 AI 개발 (당근 팀)
  • 유니티를 활용한 RPG 게임 개발 (장세윤)
  • 그림으로 이해하는 도커와 쿠버네티스 (토쿠나가 코헤이 , 서수환)
  • AI 개발자가 되고 싶으세요? (배휘동, 홍석용)
  • 유리링의 실전 게임 시스템 기획 (정윤지(유리링))
  • MCP 실전 활용 & 서버 개발 핵심 가이드 (AI튜터랩)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • AI 에이전트 생태계 (이주환)
  • AI 에이전트 인 액션 (마이클 래넘, 류광)
  • 미래를 선점하라 : AI Agent와 함께라면 당신도 디지털 천재 (정승원(디지털 셰르파))
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 막힘없이 PostgreSQL (임경석, 김철환)
  • 처음 시작하는 FastAPI (빌 루바노빅, 한용재)
  • 켄트 벡의 Tidy First? (켄트 벡, 안영회)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전