본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Data Analysis with Scala 상세페이지

Hands-On Data Analysis with Scala

Perform data collection, processing, manipulation, and visualization with Scala

  • 관심 0
소장
전자책 정가
21,000원
판매가
21,000원
출간 정보
  • 2019.05.03 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 288 쪽
  • 9.5MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789344264
ECN
-
Hands-On Data Analysis with Scala

작품 정보

▶What You Will Learn
- Techniques to determine the validity and confidence level of data
- Apply quartiles and n-tiles to datasets to see how data is distributed into many buckets
- Create data pipelines that combine multiple data lifecycle steps
- Use built-in features to gain a deeper understanding of the data
- Apply Lasso regression analysis method to your data
- Compare Apache Spark API with traditional Apache Spark data analysis

▶Key Features
- A beginner's guide for performing data analysis loaded with numerous rich, practical examples
- Access to popular Scala libraries such as Breeze, Saddle for efficient data manipulation and exploratory analysis
- Develop applications in Scala for real-time analysis and machine learning in Apache Spark

▶Who This Book Is For
If you are a data scientist or a data analyst who wants to learn how to perform data analysis using Scala, this book is for you. All you need is knowledge of the basic fundamentals of Scala programming.

▶What this book covers
- Chapter 1, Scala Overview, gives you a quick run through Scala and its features. It will prepare you for upcoming chapters.

- Chapter 2, Data Analysis Life Cycle, turns the focus exclusively to data analysis and its typical life cycle. It provides an overview of the steps involved in the data analysis life cycle.

- Chapter 3, Data Ingestion, deep-dives into the data ingestion aspects of the data life cycle. It covers extraction, staging, validation, cleaning, and shaping data tasks. It highlights how to deal with the variety aspect of data, that is, how to handle data from different sources in different formats.

- Chapter 4, Data Exploration and Visualization, deep-dives into the data exploration and visualization parts of the life cycle. It familiarizes the reader with techniques for discovering inherent properties associated with data using statistical as well as visual methods.

- Chapter 5, Applying Statistics and Hypothesis Testing, provides an overview of the statistical methods used in data analysis and covers techniques for deriving meaningful insights from data.

- Chapter 6, Intro to Spark for Distributed Data Analysis, covers the transition to doing data analysis on distributed systems and doing it at scale. It provides a good introduction to Spark, a Scala-based distributed framework for data processing. It will guide you through Spark setup on your computer and introduce key features using practical examples.

- Chapter 7, Traditional Machine Learning for Data Analysis, covers topics such as decision trees, random forests, lasso regression, and k-means cluster analysis. It also covers the role of NLP in effectively analyzing certain types of data.

- Chapter 8, Near Real-Time Data Analysis Using Streaming, introduces the concept of streamoriented processing and compares it to traditional batch-oriented processing. It also illustrates how streaming can be used to perform near real-time data analysis. This chapter deep-dives into Spark Streaming and will guide you on implementing clustering and a classifier leveraging Spark Streaming APIs.

- Chapter 9, Working with Data at Scale, is dedicated to processing data at scale. It looks at data analysis from multiple dimensions, such as cost, reliability, and performance. It provides guidance on some of the best reliability and performance practices. It provides a complete picture of how a practical real-world data analysis life cycle works and will help you to put this into practice in a production environment.

작가 소개

▶About the Author
- Rajesh Gupta
Rajesh is a Hands-on Big Data Tech Lead and Enterprise Architect with extensive experience in the full life cycle of software development. He has successfully architected, developed and deployed highly scalable data solutions using Spark, Scala and Hadoop technology stack for several enterprises. A passionate, hands-on technologist, Rajesh has master’s degrees in Mathematics and Computer Science from BITS, Pilani (India).

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 그림으로 이해하는 알고리즘 (이시다 모리테루, 미야자키 쇼이치)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개발자를 위한 IT 영어 온보딩 가이드 (장진호)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전