본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On Deep Learning for IoT 상세페이지

Hands-On Deep Learning for IoT

Train neural network models to develop intelligent IoT applications

  • 관심 0
소장
전자책 정가
17,000원
판매가
17,000원
출간 정보
  • 2019.06.27 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 298 쪽
  • 31.1MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789616064
ECN
-
Hands-On Deep Learning for IoT

작품 정보

▶Book Description
Artificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale.

Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT.

You'll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN).

You'll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you'll learn IoT application development for healthcare with IoT security enhanced.

By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making.

▶What You Will Learn
- Get acquainted with different neural network architectures and their suitability in IoT
- Understand how deep learning can improve the predictive power in your IoT solutions
- Capture and process streaming data for predictive maintenance
- Select optimal frameworks for image recognition and indoor localization
- Analyze voice data for speech recognition in IoT applications
- Develop deep learning-based IoT solutions for healthcare
- Enhance security in your IoT solutions
- Visualize analyzed data to uncover insights and perform accurate predictions

▶Key Features
- Understand how deep learning facilitates fast and accurate analytics in IoT
- Build intelligent voice and speech recognition apps in TensorFlow and Chainer
- Analyze IoT data for making automated decisions and efficient predictions

▶Who This Book Is For
If you're an IoT developer, data scientist, or deep learning enthusiast who wants to apply deep learning techniques to build smart IoT applications, this book is for you. Familiarity with machine learning, a basic understanding of the IoT concepts, and some experience in Python programming will help you get the most out of this book.

▶What this book covers
- Chapter 1, End-to-End Life Cycle of IoT, discusses the end-to-end life cycle of IoT and its related concepts and components, as well as the key characteristics and issues of IoT data that demands the use of DL in IoT. Furthermore, it also covers the importance of analytics in the IoT and the motivation to use DL in data analytics.

- Chapter 2, Deep Learning Architectures for IoT, provides the basic concepts of DL architectures and platforms, which will be used in all subsequent chapters. We will start with a brief introduction to machine learning (ML) and move to DL, which is a branch of ML based on a set of algorithms that attempt to model high-level abstractions in data. We will briefly discuss some of the most well-known and widely used neural network architectures. Finally, various features of DL frameworks and libraries will be discussed, which will be used for developing DL applications on IoT-enabled devices.

- Chapter 3, Image Recognition in IoT, covers hands-on image data processing application development in the IoT. First, it briefly describes different IoT applications and their image detection-based decision making. This chapter also briefly discusses two IoT applications and their image detection-based implementation in a real-world scenario. In the second part of the chapter, we shall present a hands-on image detection implementation of the applications using a DL algorithm.

- Chapter 4, Audio/Speech/Voice Recognition in IoT, briefly describes different IoT applications and their speech/voice recognition-based decision making. In addition, it will briefly discuss two IoT applications and their speech/voice recognition-based implementations in a real-world scenario. In the second part of the chapter, we shall present a hands-on speech/voice detection implementation of the applications using DL algorithms.

- Chapter 5, Indoor localization in IoT, discusses how the DL techniques can be used for indoor localization in IoT applications in general with the aid of a hands-on example. It will discuss how to collect data from those devices and technologies, such as analyzing Wi-Fi fingerprinting data through the use of DL models to predict the location of the device or users in indoor environments. We will also discuss some deployment settings of indoor localization services in IoT environments.

- Chapter 6, Physiological and Psychological State Detection in IoT, presents DL-based human physiological and psychological state detection techniques for IoT applications in general. The first part of this chapter will briefly describe different IoT applications and their decision making abilities based on the detection of physiological and psychological states. In addition, it will briefly discuss two IoT applications and their physiological and psychological state detection-based implementations in a real-world scenario. In the second part of the chapter, we shall present a hands-on physiological and psychological state detection implementation of the applications using DL algorithms.

- Chapter 7, IoT Security, presents DL-based networks and devices' behavioral data analysis, along with security incident detection techniques for IoT applications in general. The first part of this chapter will briefly describe different IoT security attacks and their potential detection techniques, including DL/ML-based ones. In addition, it will briefly discuss two IoT use cases where security attacks (such as a DoS attack and DDoS) can be detected intelligently and automatically through DL-based anomaly detection. In the second part of the chapter, we shall present a hands-on example of DL-based security incident detection implementations.

- Chapter 8, Predictive Maintenance for IoT, describes how to develop a DL solution for predictive maintenance for IoT using the Turbofan Engine Degradation Simulation dataset. The idea behind predictive maintenance is to determine whether failure patterns of various types can be predicted. We will also discuss how to collect data from IoT-enabled devices for the purpose of predictive maintenance.

- Chapter 9, Deep Learning in Healthcare IoT, presents DL-based IoT solutions for healthcare in general. The first part of this chapter will present an overview of different applications of IoT in healthcare, followed by a brief discussion of two use cases where healthcare services can be improved and/or automated through well-supported IoT solutions. In the second part of the chapter, we shall present hands-on experience of the DL-based healthcare incident and/or diseases detection part of the two use cases.

- Chapter 10, What's Next – Wrapping Up and Future Directions, presents a summary of the earlier chapters, and then discusses the main challenges, together with examples, faced by existing DL techniques in their development and implementation for resource-constrained and embedded IoT environments. Finally, we summarize a number of existing solutions and point out some potential solution directions that can fill the existing gaps for DL-based IoT analytics.

작가 소개

▶About the Author
- Dr. Mohammad Abdur Razzaque
Dr. Mohammad Abdur Razzaque (Raz) is a senior lecturer in the School of Computing and Digital Technologies, Teesside University, UK. He has more than 14 years of research and development and teaching experience on distributed systems (Internet of Things, P2P networking, and cloud computing) as well as experience in cybersecurity. He is an expert in end-to-end (sensors-to-cloud) IoT solutions. He offers consultancy in the areas of IoT solutions and the use of machine learning techniques in businesses. He has successfully published more than 65 research papers in these areas.

He holds a PhD in distributed systems (P2P wireless sensor networks, mobile ad hoc networks) from the School of Computer Science and Informatics, UCD, Dublin (2008).

- Md. Rezaul Karim
Md. Rezaul Karim is a researcher, author, and data science enthusiast with a strong computer science background, coupled with 10 years of research and development experience in machine learning, deep learning, and data mining algorithms to solve emerging bioinformatics research problems by making them explainable. He is passionate about applied machine learning, knowledge graphs, and explainable artificial intelligence (XAI).

Currently, he is working as a research scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a researcher at the Insight Centre for Data Analytics, Ireland. Previously, he worked as a lead software engineer at Samsung Electronics, Korea.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 프로그래머의 뇌 (펠리너 헤르만스, 차건회)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 켄트 벡의 Tidy First? (켄트 벡, 안영회)
  • 개정판 | 이게 되네? 챗GPT 미친 활용법 71제 (오힘찬)
  • 모두를 위한 양자 컴퓨터 (윌리엄 헐리, 플로이드 스미스)
  • 무엇이 1등 팀을 만드는가? (애디 오스마니, LINE SQE 팀)
  • 소프트웨어 엔지니어 가이드북 (게르겔리 오로스, 이민석)
  • 우아한 타입스크립트 with 리액트 (우아한형제들 웹프론트개발그룹, 김민태)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 머신 러닝 Q & AI (세바스찬 라시카, 박해선)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • 막힘없이 PostgreSQL (임경석, 김철환)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전