본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On GPU Computing with Python 상세페이지

Hands-On GPU Computing with Python

Explore the capabilities of GPUs for solving high performance computational problems

  • 관심 0
소장
전자책 정가
20,000원
판매가
20,000원
출간 정보
  • 2019.05.14 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 441 쪽
  • 25.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789342406
ECN
-
Hands-On GPU Computing with Python

작품 정보

▶Book Description
GPUs are proving to be excellent general purpose-parallel computing solutions for high performance tasks such as deep learning and scientific computing.

This book will be your guide to getting started with GPU computing. It will start with introducing GPU computing and explain the architecture and programming models for GPUs. You will learn, by example, how to perform GPU programming with Python, and you’ll look at using integrations such as PyCUDA, PyOpenCL, CuPy and Numba with Anaconda for various tasks such as machine learning and data mining. Going further, you will get to grips with GPU work flows, management, and deployment using modern containerization solutions. Toward the end of the book, you will get familiar with the principles of distributed computing for training machine learning models and enhancing efficiency and performance.

By the end of this book, you will be able to set up a GPU ecosystem for running complex applications and data models that demand great processing capabilities, and be able to efficiently manage memory to compute your application effectively and quickly.

▶What You Will Learn
- Utilize Python libraries and frameworks for GPU acceleration
- Set up a GPU-enabled programmable machine learning environment on your system with Anaconda
- Deploy your machine learning system on cloud containers with illustrated examples
- Explore PyCUDA and PyOpenCL and compare them with platforms such as CUDA, OpenCL and ROCm.
- Perform data mining tasks with machine learning models on GPUs
- Extend your knowledge of GPU computing in scientific applications

▶Key Features
- Understand effective synchronization strategies for faster processing using GPUs
- Write parallel processing scripts with PyCuda and PyOpenCL
- Learn to use the CUDA libraries like CuDNN for deep learning on GPUs

▶Who This Book Is For
Data Scientist, Machine Learning enthusiasts and professionals who wants to get started with GPU computation and perform the complex tasks with low-latency. Intermediate knowledge of Python programming is assumed.

▶What this book covers
- Chapter 1, Introduction to GPU Computing, covers the diverse impact of GPUs beyond the gaming industry. Conventional CPU models and accelerated GPU models are compared. A brief history and some fundamental concepts are discussed.

- Chapter 2, Designing a GPU Computing Strategy, focuses on computer hardware-related discussions. You will gain knowledge on how to get started with GPU computing-friendly hardware. The impact on GPU performance will also be discussed, with a comparison of air and liquid cooling.

- Chapter 3, Setting Up a GPU Computing Platform with NVIDIA and AMD, focuses on leading GPU manufacturers NVIDIA and AMD, with a comparison of their readily available programmable models. The differences in computing on both platforms will be highlighted.

- Chapter 4, Fundamentals of GPU Programming, introduces GPU programming and three different platforms, namely CUDA, ROCm, and Anaconda. NVIDIA and AMD GPUs will be revisited here to explore the practical usage of GPUs with a selection of computer hardware platforms.

- Chapter 5, Setting Up Your Environment for GPU Programming, offers a brief guide on choosing the most suitable IDE for GPU computing with Python. PyCharm will be discussed in detail, and its effectiveness as a GPU-programmable platform will also be illustrated.

- Chapter 6, Working with CUDA and PyCUDA, teaches you how to install and configure the PyCharm IDE with PyCUDA. You will be able to develop your own code through Python after learning about how to make use of NVIDIA's CUDA API within Python code.

- Chapter 7, Working with ROCm and PyOpenCL, introduces you to the open source world of GPU computing! You will learn about ROCm, and a CUDA converter called HIPify, to easily port GPU code for both NVIDIA and AMD GPUs. With PyOpenCL, you will be able to develop your own code through Python, after learning about how to make use of the OpenCL API within Python code.

- Chapter 8, Working with Anaconda, CuPy, and Numba for GPUs, teaches you how to use Anaconda specifically with GPUs. This chapter will introduce you to writing pure Python code with CuPy, a GPU implementation such as NumPy, and another library called Numba for CUDA and ROCm.

- Chapter 9, Containerization on GPU-Enabled Platforms, introduces you to the concept of containerization and shows you how open and closed environments work as local or cloud containers. You will learn about Virtualenv and Google Colab with hands-on exercises.

- Chapter 10, Accelerated Machine Learning on GPUs, is a hands-on guide to installing, configuring, and testing your first GPU-accelerated machine learning program. Besides Tensorflow and PyTorch, we will explore nueral networks to get understand GPU-enabled deep learning better.

- Chapter 11, GPU Acceleration for Scientific Applications Using DeepChem, is where a Pythonbased and GPU-enabled deep learning library known as DeepChem will be discussed in detail, with a comprehensive but simple introduction to the various scientific concepts behind it.

- Appendix A, discusses various use cases wherein machine learning and Python work in tandem to enhance the data processing and analysis procedures.

작가 소개

▶About the Author
- Avimanyu Bandyopadhyay
Avimanyu Bandyopadhyay is currently pursuing a PhD degree in Bioinformatics based on applied GPU computing in Computational Biology at Heritage Institute of Technology, Kolkata, India. Since 2014, he developed a keen interest in GPU computing, and used CUDA for his master's thesis. He has experience as a systems administrator as well, particularly on the Linux platform.

Avimanyu is also a scientific writer, technology communicator, and a passionate gamer. He has published technical writing on open source computing and has actively participated in NVIDIA's GPU computing conferences since 2016. A big-time Linux fan, he strongly believes in the significance of Linux and an open source approach in scientific research. Deep learning with GPUs is his new passion!

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 멀티패러다임 프로그래밍 (유인동)
  • 혼자 만들면서 공부하는 딥러닝 (박해선)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 실전 ComfyUI (우희철)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정판 | 쉽고 빠르게 익히는 실전 LLM (시난 오즈데미르, 신병훈)
  • LLM을 활용한 실전 AI 애플리케이션 개발 (허정준, 정진호)
  • 비전공자를 위한 이해할 수 있는 파이썬 (최원영)
  • 혼자 공부하는 네트워크 (강민철)
  • 육각형 개발자 (최범균)
  • 생성형 AI를 활용한 유니티 게임 제작 입문 (오연재, 정승언)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 비전공자를 위한 이해할 수 있는 IT 지식 (최원영)
  • 개정판 | [Must Have] 코드팩토리의 플러터 프로그래밍 (최지호)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전