본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Learning Elastic Stack 7.0 Second Edition 상세페이지

Learning Elastic Stack 7.0 Second Edition

Distributed search, analytics, and visualization using Elasticsearch, Logstash, Beats, and Kibana

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.05.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 461 쪽
  • 29.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789958539
ECN
-
Learning Elastic Stack 7.0 Second Edition

작품 정보

▶What You Will Learn
- Install and configure an Elasticsearch architecture
- Solve the full-text search problem with Elasticsearch
- Discover powerful analytics capabilities through aggregations using Elasticsearch
- Build a data pipeline to transfer data from a variety of sources into Elasticsearch for analysis
- Create interactive dashboards for effective storytelling with your data using Kibana
- Learn how to secure, monitor and use Elastic Stack's alerting and reporting capabilities
- Take applications to an on-premise or cloud-based production environment with Elastic Stack

▶Key Features
- Gain access to new features and updates introduced in Elastic Stack 7.0
- Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and Kibana
- Explore useful tips for using Elastic Cloud and deploying Elastic Stack in production environments

▶Who This Book Is For
This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.

▶What this book covers
- Chapter 1, Introducing Elastic Stack, motivates you by introducing the core components of Elastic Stack, and the importance of the distributed, scalable search and analytics that Elastic Stack offers by means of use cases involving Elasticsearch. The chapter provides a brief introduction to all the core components, where they fit into the overall stack, and the purpose of each component. It concludes with instructions for downloading and installing Elasticsearch and Kibana to get started.

- Chapter 2, Getting Started with Elasticsearch, introduces the core concepts involved in Elasticsearch, which form the backbone of the Elastic Stack. Concepts such as indexes, types, nodes, and clusters are introduced. You will also be introduced to the REST API to perform essential operations, datatypes, and mappings.

- Chapter 3, Searching – What is Relevant, focuses on the search use case of Elasticsearch. It introduces the concepts of text analysis, tokenizers, analyzers, and the need for analysis and relevance-based searches. The chapter highlights an example use case to cover the relevance-based search topics.

- Chapter 4, Analytics with Elasticsearch, covers various types of aggregations by means of examples in order for you to acquire an in-depth understanding. This chapter covers very simple to complex aggregations to get powerful insights from terabytes of data. The chapter also covers the motivation behind using different types of aggregations.

- Chapter 5, Analyzing Log Data, establishes the foundation for the motivation behind Logstash, its architecture, and installing and configuring Logstash to set up basic data pipelines. Elastic 5 introduced ingest nodes, which can be used instead of a dedicated Logstash setup. This chapter also covers building pipelines using Elastic ingest nodes.

-Chapter 6, Building Data Pipelines with Logstash, builds on the fundamental knowledge of Logstash by means of transformations and aggregation-related filters. It covers how the rich set of filters brings Logstash closer to the other real-time and near real-time stream processing frameworks with zero coding. It introduces the Beats platform, along with FileBeat components, to transport log files from edge machines.

- Chapter 7, Visualizing Data with Kibana, covers how to effectively use Kibana to build beautiful dashboards for effective story telling regarding your data. It uses a sample dataset and provides step-by-step guidance on creating visualizations with just a few clicks.

- Chapter 8, Elastic X-Pack, covers how to add the extensions required for specific use cases. Elastic X-Pack is a set of extensions developed and maintained by Elastic Stack developers. These extensions are maintained with consistent versioning.

- Chapter 9, Running Elastic Stack in Production, puts together a complete application for sensor data analytics with the concepts learned so far. It is entirely reliant on Elastic Stack components and close to zero programming. It shows how to model your data in Elasticsearch, how to build the data pipeline to ingest data, and then visualize it using Kibana. It also demonstrates how to effectively use X-Pack components to secure, monitor, and get alerts when certain conditions are met in this real-world example.

- Chapter 10, Building a Sensor Data Analytics Application, covers recommendations on how to deploy Elastic Stack to production. ElasticSearch can be deployed to solve a variety of use cases, such as product search, log analytics, and sensor data analytics. This chapter provides recommendations for taking your application to production. It provides guidelines on typical configurations that need to be looked at for different use cases. It also covers deployment in cloud-based hosted providers such as Elastic Cloud.

- Chapter 11, Monitoring Server Infrastructure, shows how you can use Elastic Stack to set up a real-time monitoring solution for your servers and applications that is built entirely using Elastic Stack. This can help prevent and minimize downtime while also improving the end user experience.

작가 소개

▶About the Author
- Pranav Shukla
Pranav Shukla is the founder and CEO of Valens DataLabs, a technologist, husband, and father of two. He is a big data architect and software craftsman who uses JVM-based languages. Pranav has over 14 years' experience in architecting enterprise applications for Fortune 500 companies and start-ups. His core expertise lies in building JVM-based, scalable, reactive, and data-driven applications using Java/Scala, the Hadoop ecosystem, Apache Spark, and NoSQL databases. Pranav founded Valens DataLabs with the vision of helping companies to leverage data to their competitive advantage. In his spare time, he enjoys reading books, playing musical instruments, singing, listening to music, and watching cricket.

- Sharath Kumar M N
Sharath Kumar M N did his master's in computer science at the University of Texas, Dallas, USA. He is currently working as a senior principal architect at Broadcom. Prior to this, he was working as an Elasticsearch solutions architect at Oracle. He has given several tech talks at conferences such as Oracle Code events. Sharath is a certified trainer – Elastic Certified Instructor – one of the few technology experts in the world who has been certified by Elastic Inc. to deliver their official from the creators of Elastic training. He is also a data science and machine learning enthusiast.

In his free time, he likes playing with his lovely niece, Monisha; nephew, Chirayu; and his pet, Milo.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 조코딩의 AI 비트코인 자동 매매 시스템 만들기 (조동근)
  • 모던 소프트웨어 엔지니어링 (데이비드 팔리, 박재호)
  • 요즘 우아한 AI 개발 (우아한형제들)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 개정4판 | 스위프트 프로그래밍 (야곰)
  • 웹 접근성 바이블 (이하라 리키야, 고바야시 다이스케)
  • Do it! LLM을 활용한 AI 에이전트 개발 입문 (이성용)
  • 혼자 공부하는 네트워크 (강민철)
  • 컴퓨터 밑바닥의 비밀 (루 샤오펑, 김진호)
  • 7가지 프로젝트로 배우는 LLM AI 에이전트 개발 (황자, 김진호)
  • 러닝 랭체인 (메이오 오신, 누노 캄포스)
  • LLM 엔지니어링 (막심 라본, 폴 이우수틴)
  • 멀티패러다임 프로그래밍 (유인동)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • 테스트 너머의 QA 엔지니어링 (김명관)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 기획자로 산다는 것 (카카)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전