▶What You Will Learn
- Crack how a machine learns a concept and generalize its understanding to new data
- Uncover the fundamental differences between parametric and non-parametric models
- Implement and grok several well-known supervised learning algorithms from scratch
- Work with models in domains such as ecommerce and marketing
- Expand your expertise and use various algorithms such as regression, decision trees, and clustering
- Build your own models capable of making predictions
- Delve into the most popular approaches in deep learning such as transfer learning and neural networks
▶Key Features
- Delve into supervised learning and grasp how a machine learns from data
- Implement popular machine learning algorithms from scratch, developing a deep understanding along the way
- Explore some of the most popular scientific and mathematical libraries in the Python language
▶Who This Book Is For
This book is for aspiring machine learning developers who want to get started with supervised learning. Intermediate knowledge of Python programming―and some fundamental knowledge of supervised learning―are expected.
▶What this book covers
- Chapter 1, First Step toward Supervised Learning, covers the basics of supervised machine learning to get you prepared to start tackling problems on your own. The chapter comprises four important sections. First, we will get our Anaconda environment set up and make sure that we are able to run the examples. Over the next couple of sections following that, we will cover a bit more of the theory behind machine learning, before we start implementing algorithms in the final section, where we'll get our Anaconda environment set up.
- Chapter 2, Implementing Parametric Models, dives into the guts of several popular supervised learning algorithms within the parametric modeling family. We'll start this section by formally introducing parametric models, then we'll focus on two very popular parametric models in particular: linear and logistic regression. We'll spend some time understanding the inner workings and then jump into Python and actually code them from scratch.
- Chapter 3, Working with Non-Parametric Models, explores the non-parametric model family. We will start by covering the bias-variance trade-off, and explain how parametric and nonparametric models differ at a fundamental level. We will then get into decision trees and clustering methods. Finally, we'll address some of the pros and cons of non-parametric models.
- Chapter 4, Advanced Topics in Supervised ML, splits its time between two topics: recommender systems and neural networks. We'll start with collaborative filtering and then talk about integrating content-based similarities into your collaborative filtering systems. Finally, we'll get into neural networks and transfer learning.
작가 소개
▶About the Author
- Taylor Smith
Taylor Smith is a machine learning enthusiast with over five years of experience who loves to apply interesting computational solutions to challenging business problems. Currently working as a principal data scientist, Taylor is also an active open source contributor and staunch Pythonista.
리뷰
0.0
구매자 별점
0명 평가
이 작품을 평가해 주세요!
건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
타인에게 불쾌감을 주는 욕설
비속어나 타인을 비방하는 내용
특정 종교, 민족, 계층을 비방하는 내용
해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
의미를 알 수 없는 내용
광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
저작권상 문제의 소지가 있는 내용
다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다. 첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.