본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Training Systems Using Python Statistical Modeling 상세페이지

Training Systems Using Python Statistical Modeling

Explore popular techniques for modeling your data in Python

  • 관심 0
소장
전자책 정가
19,000원
판매가
19,000원
출간 정보
  • 2019.05.20 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 284 쪽
  • 25.7MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838820640
UCI
-
Training Systems Using Python Statistical Modeling

작품 정보

▶Book Description
Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics.

You'll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them.

By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.

▶What You Will Learn
- Understand the importance of statistical modeling
- Learn about the various Python packages for statistical analysis
- Implement algorithms such as Naive Bayes, random forests, and more
- Build predictive models from scratch using Python's scikit-learn library
- Implement regression analysis and clustering
- Learn how to train a neural network in Python

▶Key Features
- Get introduced to Python's rich suite of libraries for statistical modeling
- Implement regression, clustering and train neural networks from scratch
- Includes real-world examples on training end-to-end machine learning systems in Python

▶Who This Book Is For
If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.

▶What this book covers
- Chapter 1, Classical Statistical Analysis, helps you apply your knowledge of Python and machine learning to create data models and perform statistical analysis. You will learn about various statistical learning techniques and learn how to apply them in data analysis.

- Chapter 2, Introduction to Supervised Learning, discusses what's involved in machine learning and what it is all about. We start by discussing the principles involved in machine learning, with a particular focus on binary classification. Then, we will look at various techniques used when training models. Finally, we will look at some common metrics that people use to judge how well an algorithm is performing.

- Chapter 3, Binary Prediction Models, looks at various methods for classifying data, focusing on binary data. We will see how we can extend algorithms for binary classification to algorithms that are capable of multiclass classification.

- Chapter 4, Regression Analysis and How to Use It, covers a different variant of supervised learning. It focuses on different modes of linear regression and how to apply them for various purposes.

- Chapter 5, Neural Networks, talks about classification and regression using neural networks. We will learn about perceptrons. We will also discuss the idea behind neural networks, including the different types of perceptrons, and what a multilayer perceptron is. You will also learn how to train a neural network for various purposes.

- Chapter 6, Clustering Techniques, goes into detail about unsupervised learning. You'll learn about clustering and various approaches to clustering. You'll also learn how to implement those approaches for various purposes, such as image compression.

- Chapter 7, Dimensionality Reduction, focuses on dimensionality reduction techniques. You will learn about various techniques, such as PCA, SVD, and MDS.

작가 소개

▶About the Author
- Curtis Miller
Curtis Miller is a doctoral candidate at the University of Utah studying mathematical statistics. He writes software for both research and personal interest, including the R package (CPAT) available on the Comprehensive R Archive Network (CRAN). Among Curtis Miller's publications are academic papers along with books and video courses all published by Packt Publishing. Curtis Miller's video courses include Unpacking NumPy and Pandas, Data Acquisition and Manipulation with Python, Training Your Systems with Python Statistical Modelling, and Applications of Statistical Learning with Python. His books include Hands-On Data Analysis with NumPy and Pandas.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 바이브 코딩 너머 개발자 생존법 (애디 오스마니, 강민혁)
  • 혼자 공부하는 바이브 코딩 with 클로드 코드 (조태호)
  • 요즘 당근 AI 개발 (당근 팀)
  • AI 자율학습 밑바닥부터 배우는 AI 에이전트 (다비드스튜디오)
  • 알아서 잘하는 에이전틱 AI 시스템 구축하기 (안자나바 비스와스, 릭 탈루크다르)
  • 도메인 주도 설계를 위한 함수형 프로그래밍 (스콧 블라신, 박주형)
  • 개정2판 | 소프트웨어 아키텍처 The Basics (마크 리처즈, 닐 포드)
  • AI 엔지니어링 (칩 후옌, 변성윤)
  • 연필과 종이로 풀어보는 딥러닝 수학 워크북 214제 (톰 예(Tom yeh) )
  • 밑바닥부터 만들면서 배우는 LLM (세바스찬 라시카, 박해선)
  • 러스트 클린 코드 (브렌든 매슈스, 윤인도)
  • 요즘 바이브 코딩 클로드 코드 완벽 가이드 (최지호(코드팩토리))
  • 처음부터 시작하는 Next.js / React 개발 입문 (미요시 아키, 김모세)
  • AI 자율학습 커서 × AI로 완성하는 나만의 웹 서비스 (성구(강성규) )
  • 개정판 | <소문난 명강의> 레트로의 유니티 6 게임 프로그래밍 에센스 (이제민)
  • 만화로 배우는 리눅스 시스템 관리 1권(PDF 버전) (Piro, 서수환)
  • 요즘 개발자를 위한 시스템 설계 수업 (디렌드라 신하 , 테자스 초프라)
  • 언리얼 엔진으로 배우는 게임 디자인 패턴 (스튜어트 버틀러, 톰 올리버)
  • 데이터베이스 설계, 이렇게 하면 된다 (미크, 윤인성)
  • 핸즈온 바이브 코딩 (정도현)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전