본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Deep Reinforcement Learning Hands-On Second Edition 상세페이지

Deep Reinforcement Learning Hands-On Second Edition

Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

  • 관심 0
소장
전자책 정가
25,000원
판매가
25,000원
출간 정보
  • 2020.01.31 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 827 쪽
  • 16.0MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838820046
ECN
-
Deep Reinforcement Learning Hands-On Second Edition

작품 정보

▶Book Description
Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks.

With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field.

In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization.

In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.

▶What You Will Learn
- Understand the deep learning context of RL and implement complex deep learning models
- Evaluate RL methods including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, D4PG, and others
- Build a practical hardware robot trained with RL methods for less than $100
- Discover Microsoft's TextWorld environment, which is an interactive fiction games platform
- Use discrete optimization in RL to solve a Rubik's Cube
- Teach your agent to play Connect 4 using AlphaGo Zero
- Explore the very latest deep RL research on topics including AI chatbots
- Discover advanced exploration techniques, including noisy networks and network distillation techniques

▶Key Features
- Second edition of the bestselling introduction to deep reinforcement learning, expanded with six new chapters
- Learn advanced exploration techniques including noisy networks, pseudo-count, and network distillation methods
- Apply RL methods to cheap hardware robotics platforms

▶Who This Book Is For
Some fluency in Python is assumed. Sound understanding of the fundamentals of deep learning will be helpful. This book is an introduction to deep RL and requires no background in RL

▶What this book covers
- Chapter 1, What Is Reinforcement Learning?, contains an introduction to RL ideas and the main formal models.

- Chapter 2, OpenAI Gym, introduces the practical aspects of RL, using the open source library Gym.

- Chapter 3, Deep Learning with PyTorch, gives a quick overview of the PyTorch library.

- Chapter 4, The Cross-Entropy Method, introduces one of the simplest methods in RL to give you an impression of RL methods and problems.

- Chapter 5, Tabular Learning and the Bellman Equation, introduces the value-based family of RL methods.

- Chapter 6, Deep Q-Networks, describes deep Q-networks (DQNs), an extension of the basic value-based methods, allowing us to solve a complicated environment.

- Chapter 7, Higher-Level RL Libraries, describes the library PTAN, which we will use in the book to simplify the implementations of RL methods.

- Chapter 8, DQN Extensions, gives a detailed overview of a modern extension to the DQN method, to improve its stability and convergence in complex environments.

- Chapter 9, Ways to Speed up RL Methods, provides an overview of ways to make the execution of RL code faster.

- Chapter 10, Stocks Trading Using RL, is the first practical project and focuses on applying the DQN method to stock trading.

- Chapter 11, Policy Gradients—an Alternative, introduces another family of RL methods that is based on policy learning.

- Chapter 12, The Actor-Critic Method, describes one of the most widely used methods in RL.

- Chapter 13, Asynchronous Advantage Actor-Critic, extends the actor-critic method with parallel environment communication, which improves stability and convergence.

- Chapter 14, Training Chatbots with RL, is the second project and shows how to apply RL methods to natural language processing problems.

- Chapter 15, The TextWorld Environment, covers the application of RL methods to interactive fiction games.

- Chapter 16, Web Navigation, is another long project that applies RL to web page navigation using the MiniWoB set of tasks.

- Chapter 17, Continuous Action Space, describes the specifics of environments using continuous action spaces and various methods.

- Chapter 18, RL in Robotics, covers the application of RL methods to robotics problems. In this chapter, I describe the process of building and training a small hardware robot with RL methods.

- Chapter 19, Trust Regions – PPO, TRPO, ACKTR, and SAC, is yet another chapter about continuous action spaces describing the trust region set of methods.

- Chapter 20, Black-Box Optimization in RL, shows another set of methods that don't use gradients in their explicit form.

- Chapter 21, Advanced Exploration, covers different approaches that can be used for better exploration of the environment.

- Chapter 22, Beyond Model-Free – Imagination, introduces the model-based approach to RL and uses recent research results about imagination in RL.

- Chapter 23, AlphaGo Zero, describes the AlphaGo Zero method and applies it to the game Connect 4.

- Chapter 24, RL in Discrete Optimization, describes the application of RL methods to the domain of discrete optimization, using the Rubik's Cube as an environment.

- Chapter 25, Multi-agent RL, introduces a relatively new direction of RL methods for situations with multiple agents.

작가 소개

▶About the Author
- Maxim Lapan
Maxim Lapan is a deep learning enthusiast and independent researcher. His background and 15 years' work expertise as a software developer and a systems architect lies from low-level Linux kernel driver development to performance optimization and design of distributed applications working on thousands of servers. With vast work experiences in big data, machine learning, and large parallel distributed HPC and non-HPC systems, he is able to explain a number of complicated concepts in simple words and vivid examples. His current areas of interest are in practical applications of deep learning, such as deep natural language processing and deep reinforcement learning. Maxim lives in Moscow, Russian Federation, with his family.

리뷰

4.0

구매자 별점
1명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 윌 라슨의 엔지니어링 리더십 (윌 라슨, 임백준)
  • 이펙티브 소프트웨어 설계 (토마스 레렉, 존 스키트)
  • MCP 혁신: 클로드로 엑셀, 한글, 휴가 등록부터 결재문서 자동화까지 with python (이호준, 차경림)
  • 플랫폼 엔지니어링 (이언 놀런드, 카미유 푸르니에)
  • 랭체인과 RAG로 배우는 실전 LLM 애플리케이션 개발 (양기빈, 조국일)
  • 이지 러스트 (데이브 매클라우드, 이지호)
  • 개정판 | 밑바닥부터 시작하는 딥러닝 1 (사이토 고키, 이복연)
  • 랭체인 & 랭그래프로 AI 에이전트 개발하기 (서지영)
  • 최고의 프롬프트 엔지니어링 강의 (김진중)
  • 개정판|혼자 공부하는 파이썬 (윤인성)
  • 생성형 AI, AI STUDIOS로 인공지능 영상 제작 더 쉽고 더 빠르게 (장세영, 안창현)
  • LLM 서비스 설계와 최적화 (슈레야스 수브라마니암, 김현준)
  • 개정판 | 혼자 공부하는 머신러닝+딥러닝 (박해선)
  • 한 권으로 끝내는 실전 LLM 파인튜닝 (강다솔)
  • 우아한 타입스크립트 with 리액트 (우아한형제들 웹프론트개발그룹, 김민태)
  • 혼자 공부하는 컴퓨터 구조+운영체제 (강민철)
  • 머신 러닝 Q & AI (세바스찬 라시카, 박해선)
  • 이펙티브 소프트웨어 아키텍처 (올리버 골드만, 최희철)
  • 무엇이 1등 팀을 만드는가? (애디 오스마니, LINE SQE 팀)
  • 자바/스프링 개발자를 위한 실용주의 프로그래밍 (김우근)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전