본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Python Machine Learning Third Edition 상세페이지

Python Machine Learning Third Edition

Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

  • 관심 0
소장
전자책 정가
25,000원
판매가
25,000원
출간 정보
  • 2019.12.12 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 771 쪽
  • 30.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781789958294
ECN
-
Python Machine Learning Third Edition

작품 정보

▶Book Description
Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.

Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself.

Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents.

This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.

▶What You Will Learn
- Master the frameworks, models, and techniques that enable machines to 'learn' from data
- Use scikit-learn for machine learning and TensorFlow for deep learning
- Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more
- Build and train neural networks, GANs, and other models
- Discover best practices for evaluating and tuning models
- Predict continuous target outcomes using regression analysis
- Dig deeper into textual and social media data using sentiment analysis

▶Key Features
- Third edition of the bestselling, widely acclaimed Python machine learning book
- Clear and intuitive explanations take you deep into the theory and practice of Python machine learning
- Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices

▶Who This Book Is For
If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.

▶What this book covers
- Chapter 1, Giving Computers the Ability to Learn from Data, introduces the main subareas of machine learning used to tackle various problem tasks. In addition, it discusses the essential steps for creating a typical machine learning model-building pipeline that will guide us through the following chapters.

- Chapter 2, Training Simple Machine Learning Algorithms for Classification, goes back to the origin of machine learning and introduces binary perceptron classifiers and adaptive linear neurons. This chapter is a gentle introduction to the fundamentals of pattern classification and focuses on the interplay of optimization algorithms and machine learning.

- Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, describes the essential machine learning algorithms for classification and provides practical examples using one of the most popular and comprehensive open source machine learning libraries, scikit-learn.

- Chapter 4, Building Good Training Datasets – Data Preprocessing, discusses how to deal with the most common problems in unprocessed datasets, such as missing data. It also discusses several approaches to identify the most informative features in datasets and how to prepare variables of different types as proper inputs for machine learning algorithms.

- Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential techniques to reduce the number of features in a dataset to smaller sets, while retaining most of their useful and discriminatory information. It also discusses the standard approach to dimensionality reduction via principal component analysis and compares it to supervised and nonlinear transformation techniques.

- Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, discusses the dos and don'ts for estimating the performance of predictive models. Moreover, it discusses different metrics for measuring the performance of our models and techniques for fine-tuning machine learning algorithms.

- Chapter 7, Combining Different Models for Ensemble Learning, introduces the different concepts of combining multiple learning algorithms effectively. It explores how to build ensembles of experts to overcome the weaknesses of individual learners, resulting in more accurate and reliable predictions.

- Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential steps for transforming textual data into meaningful representations for machine learning algorithms to predict the opinions of people based on their writing.

- Chapter 9, Embedding a Machine Learning Model into a Web Application, continues with the predictive model from the previous chapter and walks through the essential steps of developing web applications with embedded machine learning models.

- Chapter 10, Predicting Continuous Target Variables with Regression Analysis, discusses the essential techniques for modeling linear relationships between target and response variables to make predictions on a continuous scale. After introducing different linear models, it also talks about polynomial regression and tree-based approaches.

- Chapter 11, Working with Unlabeled Data – Clustering Analysis, shifts the focus to a different subarea of machine learning, unsupervised learning. It covers algorithms from three fundamental families of clustering algorithms that find groups of objects that share a certain degree of similarity.

- Chapter 12, Implementing a Multilayer Artificial Neural Network from Scratch, extends the concept of gradient-based optimization, which we first introduced in Chapter 2, Training Simple Machine Learning Algorithms for Classification. In this chapter, we will build powerful, multilayer neural networks (NNs) based on the popular backpropagation algorithm in Python.

- Chapter 13, Parallelizing Neural Network Training with TensorFlow, builds upon the knowledge from the previous chapter to provide a practical guide for training NNs more efficiently. The focus of this chapter is on TensorFlow 2.0, an open source Python library that allows us to utilize multiple cores of modern graphics processing units (GPUs) and construct deep NNs from common building blocks via the userfriendly Keras API.

- Chapter 14, Going Deeper – The Mechanics of TensorFlow, picks up where the previous chapter left off and introduces the more advanced concepts and functionality of TensorFlow 2.0. TensorFlow is an extraordinarily vast and sophisticated library, and this chapter walks through concepts such as compiling code into a static graph for faster execution and defining trainable model parameters. In addition, this chapter provides additional hands-on experience of training deep neural networks using TensorFlow's Keras API, as well as TensorFlow's pre-made Estimators.

- Chapter 15, Classifying Images with Deep Convolutional Neural Networks, introduces convolutional neural networks (CNNs). A CNN represents a particular type of deep NN architecture that is particularly well suited for image datasets. Due to their superior performance compared to traditional approaches, CNNs are now widely used in computer vision to achieve state-of-the-art results for various image recognition tasks. Throughout this chapter, you will learn how convolutional layers can be used as powerful feature extractors for image classification.

- Chapter 16, Modeling Sequential Data Using Recurrent Neural Networks, introduces another popular NN architecture for deep learning that is especially well suited to working with text and other types of sequential data and time series data. As a warm-up exercise, this chapter introduces recurrent NNs for predicting the sentiment of movie reviews. Then, the chapter covers teaching recurrent networks to digest information from books in order to generate entirely new text.

- Chapter 17, Generative Adversarial Networks for Synthesizing New Data, introduces a popular adversarial training regime for NNs that can be used to generate new, realistic-looking images. The chapter starts with a brief introduction to autoencoders, a particular type of NN architecture that can be used for data compression. The chapter then shows how to combine the decoder part of an autoencoder with a second NN that can distinguish between real and synthesized images. By letting two NNs compete with each other in an adversarial training approach, you will implement a generative adversarial network that generates new handwritten digits. Lastly, after introducing the basic concepts of generative adversarial networks, the chapter introduces improvements that can stabilize the adversarial training, such as using the Wasserstein distance metric.

- Chapter 18, Reinforcement Learning for Decision Making in Complex Environments, covers a subcategory of machine learning that is commonly used for training robots and other autonomous systems. This chapter starts by introducing the basics of reinforcement learning (RL) to make you familiar with agent/environment interactions, the reward process of RL systems, and the concept of learning from experience. The chapter covers the two main categories of RL, model-based and model-free RL. After learning about basic algorithmic approaches, such as Monte Carlo- and temporal distance-based learning, you will implement and train an agent that can navigate a grid world environment using the Q-learning algorithm. Finally, this chapter introduces the deep Q-learning algorithm, which is a variant of Q-learning that uses deep NNs.

작가 소개

▶About the Author
- Sebastian Raschka
Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. Some of his recent research methods have been applied to solving problems in the field of biometrics for imparting privacy to face images. Other research focus areas include the development of methods related to model evaluation in machine learning, deep learning for ordinal targets, and applications of machine learning to computational biology.

- Vahid Mirjalili
Vahid Mirjalili obtained his Ph.D. in mechanical engineering working on novel methods for large-scale, computational simulations of molecular structures. Currently, he is focusing his research efforts on applications of machine learning in various computer vision projects at the Department of Computer Science and Engineering at Michigan State University. He recently joined 3M Company as a research scientist, where he uses his expertise and applies state-of-the-art machine learning and deep learning techniques to solve real-world problems in various applications to make life better.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • 나만의 MCP 서버 만들기 with 커서 AI (서지영)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 생성형 AI 인 액션 (아미트 바리, 이준)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 개정2판 | 인프라 엔지니어의 교과서 (사노 유타카, 김성훈)
  • 코드 밖 커뮤니케이션 (재퀴 리드, 곽지원)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 테디노트의 랭체인을 활용한 RAG 비법노트 심화편 (이경록)
  • 지속적 배포 (발렌티나 세르빌, 이일웅)
  • 코드 너머, 회사보다 오래 남을 개발자 (김상기, 배문교)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • 데이터 삽질 끝에 UX가 보였다 (이미진(란란))
  • 아키텍트 첫걸음 (요네쿠보 다케시, 조다롱)
  • 지식그래프 (이광배, 이채원)
  • 조코딩의 랭체인으로 AI 에이전트 서비스 만들기 (우성우, 조동근)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 주니어 백엔드 개발자가 반드시 알아야 할 실무 지식 (최범균)
  • 개정판 | 개발자 기술 면접 노트 (이남희)
  • 프로덕트 매니지먼트의 기술 (맷 르메이, 권원상)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전