본문 바로가기

리디 접속이 원활하지 않습니다.
강제 새로 고침(Ctrl + F5)이나 브라우저 캐시 삭제를 진행해주세요.
계속해서 문제가 발생한다면 리디 접속 테스트를 통해 원인을 파악하고 대응 방법을 안내드리겠습니다.
테스트 페이지로 이동하기

Hands-On ROS for Robotics Programming 상세페이지

Hands-On ROS for Robotics Programming

Program highly autonomous and AI-capable mobile robots powered by ROS

  • 관심 0
소장
전자책 정가
24,000원
판매가
24,000원
출간 정보
  • 2020.02.26 전자책 출간
듣기 기능
TTS(듣기) 지원
파일 정보
  • PDF
  • 432 쪽
  • 30.6MB
지원 환경
  • PC뷰어
  • PAPER
ISBN
9781838552886
ECN
-
Hands-On ROS for Robotics Programming

작품 정보

▶Book Description
Connecting a physical robot to a robot simulation using the Robot Operating System (ROS) infrastructure is one of the most common challenges faced by ROS engineers. With this book, you'll learn how to simulate a robot in a virtual environment and achieve desired behavior in equivalent real-world scenarios.

This book starts with an introduction to GoPiGo3 and the sensors and actuators with which it is equipped. You'll then work with GoPiGo3's digital twin by creating a 3D model from scratch and running a simulation in ROS using Gazebo. Next, the book will show you how to use GoPiGo3 to build and run an autonomous mobile robot that is aware of its surroundings. Finally, you'll find out how a robot can learn tasks that have not been programmed in the code but are acquired by observing its environment. You'll even cover topics such as deep learning and reinforcement learning.

By the end of this robot programming book, you'll be well-versed with the basics of building specific-purpose applications in robotics and developing highly intelligent autonomous robots from scratch.

▶What You Will Learn
- Get to grips with developing environment-aware robots
- Gain insights into how your robots will react in physical environments
- Break down a desired behavior into a chain of robot actions
- Relate data from sensors with context to produce adaptive responses
- Apply reinforcement learning to allow your robot to learn by trial and error
- Implement deep learning to enable your robot to recognize its surroundings

▶Key Features
- Learn fundamental ROS concepts and apply them to solve navigation tasks
- Work with single board computers to program smart behavior in mobile robots
- Understand how specific characteristics of the physical environment influence your robot's performance

▶Who This Book Is For
If you are an engineer looking to build AI-powered robots using the ROS framework, this book is for you. Robotics enthusiasts and hobbyists who want to develop their own ROS robotics projects will also find this book useful. Knowledge of Python and/or C++ programming and familiarity with single board computers such as Raspberry Pi is necessary to get the most out of this book.

▶What this book covers
- Chapter 1, Assembling the Robot, provides the key concepts and the practical assembly guidelines about the mobile robot on which all the content in this book is based. With a very practical approach in mind, we dive deep into the characteristics of GoPiGo3 that makes it an ideal and cost-effective platform to learn robotics. By completing the GoPiGo3 assembly, you will have acquired the first manual skills necessary for manipulating typical components in robotics. To purchase GoPiGo3 kit, you can visit https://www.dexterindustries.com/gopigo3/ and apply the coupon code BRJAPON@PACKT to get a 10% discount.

- Chapter 2, Unit Testing of GoPiGo3, provides you with a practical insight into how GoPiGo3 works. We do so by introducing the JupyterLab environment, a friendly interface that takes the structure of a notebook composed of human-readable paragraphs followed by Python code snippets. You will produce two versions of each test program: the JupyterLab notebook and the pure Python script. Using these programming tools, you will test each sensor/actuator individually and check that it's working properly, as well as gain an understanding of the technology behind.

- Chapter 3, Getting Started with ROS, explains the basic concepts of ROS. It introduces you to the framework using easy-to-understand language, avoiding very technical descriptions. This is because our primary goal is to show you exactly what ROS is in a conceptual sense. It will be in the following chapters that deep technical descriptions are provided so that you are finally able to integrate ROS into your projects.

- Chapter 4, Creating a Virtual Two-Wheeled ROS Robot, describes how to build a simple twowheeled robot, a digital twin of GoPiGo3. The model is written in the Unified Robot Description Format (URDF) and the result is checked with RViz, an ROS tool that provides a configurable Graphical User Interface (GUI) to allow the user to display the specific information they are after. RViz may be used both for global robot visualization and for debugging specific features while building a model.

- Chapter 5, Simulating Robot Behavior with Gazebo, teaches you how to plug the digital definition of your robot (the URDF file) into the simulation environment of Gazebo, which is powered with a physics engine able to emulate realistic behaviors. You will also develop your understanding of how to check and test a digital robot to ensure that its behavior represents well what should happen in the reality.

- Chapter 6, Programming in ROS Commands and Tools, introduces you to command-line interaction with ROS and explains the types of ROS commands. We will explore the most frequently used communication patterns in ROS, including the publish-subscribe model. To deal with all of your ROS data, you will be introduced to rqt, which eases the process of developing and debugging applications. Also, ROS parameters are introduced to give you an overview of their power to manage robot configuration at a high level.

- Chapter 7, Robot Control and Simulation, teaches you how to set up an ROS environment for a real robot, using GoPiGo3. We will start by looking at remote control using the keys of your laptop keyboard, then progress to the more technical method of using ROS Topics. This chapter will start you on your path from manual keyboard- and Topic-based control to internal programming logic, so that your robots can be capable of executing tasks autonomously.

- Chapter 8, Virtual SLAM and Navigation Using Gazebo, explores the technique of Simultaneous Localization and Mapping (SLAM) using a practical approach and the digital twin of GoPiGo3. You will be taught why SLAM is required prior to proper navigation. The simulation will be run in Gazebo, the ROS-native simulation tool with a physics engine that offers realistic results.

- Chapter 9, SLAM for Robot Navigation, shifts the focus to the real world with the physical GoPiGo3 robot. The chapter highlights the many details and practical questions that arise when you face a robotic task in a real environment. Simulation is good to start with, but the real proof that your robot performs as expected is gained by executing tasks in an actual scenario. This chapter is the starting point for you to get deeper into robot navigation and will be vital to your knowledge base if this is a field that you want to pursue.

- Chapter 10, Applying Machine Learning in Robotics, intends to be a gentle introduction to the topic of machine learning in robotics, favoring intuition instead of complex mathematical formulations and putting the focus on understanding the common concepts used in the field. The practical example used in this chapter will involve the Pi camera of GoPiGo3 recognizing objects.

- Chapter 11, Machine Learning with OpenAI Gym, gives you the theoretical background on reinforcement learning based on simple scenarios. This chapter allows you to better understand what happens under the hood in classical reinforcement training tasks. We will continue using practical examples to explore the concepts presented and will use the open source environment OpenAI Gym, which lets us easily test different algorithms from training agents, also driving robots in ROS.

- Chapter 12, Achieve a Goal through Reinforcement Learning, goes a step further than computer vision for object recognition and shows that GoPiGo3 not only perceives things but can also take steps to achieve a goal. Our robot will have to decide what action to execute at every step of the simulation to achieve the goal. After executing each action, the robot will be provided with feedback on how good the decision it made was in the form of a reward. After some training, the incentive of the reward will enforce and reinforce good decision making.

작가 소개

▶About the Author
- Bernardo Ronquillo Japon
Bernardo Ronquillo Japón is an Internet of Things (IoT) and robotics expert who has worked for top technology companies since 1995, including Instituto de Astrofísica de Canarias, Gran Telescopio Canarias, Altran, and Alestis Aerospace.

Using his skills and experience, he founded The Robot Academy, where he develops open source hardware and software solutions for engineers and makers: Social Robot IO (2015), for the stimulation of children with autistic spectrum disorder; Robot JUS (2016), which helps engineers get deeper technical insights with the Robot Operating System (ROS) when using low-complexity hardware; and IIoT All-in-One (2018) as an industrial IoT training package for assisting companies in their digital transformation process.

리뷰

0.0

구매자 별점
0명 평가

이 작품을 평가해 주세요!

건전한 리뷰 정착 및 양질의 리뷰를 위해 아래 해당하는 리뷰는 비공개 조치될 수 있음을 안내드립니다.
  1. 타인에게 불쾌감을 주는 욕설
  2. 비속어나 타인을 비방하는 내용
  3. 특정 종교, 민족, 계층을 비방하는 내용
  4. 해당 작품의 줄거리나 리디 서비스 이용과 관련이 없는 내용
  5. 의미를 알 수 없는 내용
  6. 광고 및 반복적인 글을 게시하여 서비스 품질을 떨어트리는 내용
  7. 저작권상 문제의 소지가 있는 내용
  8. 다른 리뷰에 대한 반박이나 논쟁을 유발하는 내용
* 결말을 예상할 수 있는 리뷰는 자제하여 주시기 바랍니다.
이 외에도 건전한 리뷰 문화 형성을 위한 운영 목적과 취지에 맞지 않는 내용은 담당자에 의해 리뷰가 비공개 처리가 될 수 있습니다.
아직 등록된 리뷰가 없습니다.
첫 번째 리뷰를 남겨주세요!
'구매자' 표시는 유료 작품 결제 후 다운로드하거나 리디셀렉트 작품을 다운로드 한 경우에만 표시됩니다.
무료 작품 (프로모션 등으로 무료로 전환된 작품 포함)
'구매자'로 표시되지 않습니다.
시리즈 내 무료 작품
'구매자'로 표시되지 않습니다. 하지만 같은 시리즈의 유료 작품을 결제한 뒤 리뷰를 수정하거나 재등록하면 '구매자'로 표시됩니다.
영구 삭제
작품을 영구 삭제해도 '구매자' 표시는 남아있습니다.
결제 취소
'구매자' 표시가 자동으로 사라집니다.

개발/프로그래밍 베스트더보기

  • AI 에이전트 생태계 (이주환)
  • 헤드 퍼스트 소프트웨어 아키텍처 (라주 간디, 마크 리처드)
  • 깃허브 액션으로 구현하는 실전 CI/CD 설계와 운영 (노무라 도모키, 김완섭)
  • 현장에서 통하는 도메인 주도 설계 실전 가이드 (마스다 토오루, 타나카 히사테루)
  • 딥러닝 제대로 이해하기 (사이먼 J. D. 프린스, 고연이)
  • 핸즈온 LLM (제이 알아마르, 마르턴 흐루턴도르스트)
  • 네이처 오브 코드 (자바스크립트판) (다니엘 쉬프만, 윤인성)
  • 도커로 구축한 랩에서 혼자 실습하며 배우는 네트워크 프로토콜 입문 (미야타 히로시, 이민성)
  • 개정판 | Do it! 플러터 앱 개발 & 출시하기 (조준수)
  • 모던 리액트 Deep Dive (김용찬)
  • 그로킹 동시성 (키릴 보브로프, 심효섭)
  • 해커톤 (노아론)
  • LLM과 RAG로 구현하는 AI 애플리케이션 (에디유, 대니얼김)
  • 이게 되네? 클로드 MCP 미친 활용법 27제 (박현규)
  • 개정2판 | 시작하세요! 도커/쿠버네티스 (용찬호)
  • 개정2판 | 파인만의 컴퓨터 강의 (리처드 파인만, 서환수)
  • npm Deep Dive (전유정, 김용찬)
  • 생성형 AI를 위한 프롬프트 엔지니어링 (제임스 피닉스, 마이크 테일러)
  • 딥러닝 프로젝트를 위한 허깅페이스 실전 가이드 (윤대희, 김동화)
  • 한 권으로 배우는 게임 프로그래밍 (박태준, 박효재)

본문 끝 최상단으로 돌아가기

spinner
앱으로 연결해서 다운로드하시겠습니까?
닫기 버튼
대여한 작품은 다운로드 시점부터 대여가 시작됩니다.
앱으로 연결해서 보시겠습니까?
닫기 버튼
앱이 설치되어 있지 않으면 앱 다운로드로 자동 연결됩니다.
모바일 버전